Voltage-sensing-based photovoltaic MPPT with improved tracking and drift avoidance capabilities (original) (raw)
Related papers
… (IICPE), 2012 IEEE 5th India …, 2012
In this paper, a novel algorithm based MPPT has been suggested for extracting maximum possible power from PV module. The proposed algorithm for controlling the MPPT is based upon the mostly used Perturb and Observe (P&O) method. Along with the proposed algorithm, different existing algorithms have been compared in terms of their tracking speed and implementation complexity. The solar module characteristics (I-V and P-V) have been simulated in MATLAB. The simulation results for various parameters of boost converter have also been obtained. In this paper, we discuss the results of our study of an improved maximum power point tracker (MPPT) of a PV system. The proposed MPPT algorithm is based on the incremental perturbation and observation (IP&O) strategy in which the perturbation steps have been increased to get closer to the maximum power point with minimum possible oscillations. The PV power system, using the proposed MPPT, will be able to optimally track maximum power points with minimum possible oscillation around maximum power points (MPPs). Consequently the light to electricity conversion efficiency can be improved significantly.
Maximum Power Point Tracker for a Photovoltaic System
In order to increase the efficiency of Photovoltaic (PV) system under different conditions such as changing insolation and temperature, the PV system should be operated at the Maximum Power Point (MPP). In this paper, we study the performances of photovoltaic generators cotrolled by Maximum Power Point Tracking (MPPT) algorithm, using a DC/DC converter (Boost) and batteries. In the first part, we develop the mathematical model of the photovoltaic cell and their electrical models. Also, we present the battery model which we used in our simulation. In the second part, we present the electrical model and equations which describe the DC/DC converter. In the last part, we develop the MPPT control algorithm P & O (Perturbation and Observation). The whole system is simulated using Matlab/Simulink and simulation results are presented and analyzed.
Simulation and Analysis of Maximum-Power-Point-Tracker for Photovoltaic Arrays
2013
This paper presents an efficient way to search for the photovoltaic array's (PA's) maximum power point (MPP). The incremental conductance is used as the basis for the search process. The algorithm consists of two stages. First, it tries to reach the nearby MPP determined by the operating voltage based on the empirical formula. A modified incremental conductance algorithm is then utilized to reach the real MPP. Finally, a digitized high-performance solar photovoltaic power conversion system is developed and verified. The design method based on the adaptive MPPT algorithm is proposed to generate the optimal power output. A DSP-based control system for synchronization of plural AC power sources has also been implemented.
Photovoltaic array maximum power point tracking via modified perturbation and observation algorithm
International Journal of Power Electronics and Drive System (IJPEDS), 2020
One drawback of PVs is their low efficiency. As the PVs have a unique maximum Power Point for a specified irradiation level, there must be an effective method for extracting maximum power from the PV module to raise the efficiency. Conventional Perturbation and Observation (P&O) is a simple algorithm for maximum power point tracking (MPPT) but it suffers from oscillation during steady state conditions and is deviated from the maximum power point during slow and rapid irradiation level change. This paper presents a modified P&O by adding variation in PV current as a third in addition to the voltage and power variation parameters. This new algorithm is capable of eliminating the MPPT deviation. To increase the perturbation speed, a double step is taken as the tracking is deviated from the MPP. The modified P&O algorithm is used to control the duty cycle of DC-DC buck converter. The simulation shows that the modified P&O is faster than the conventional. The power loss due to oscillation before attaining the steady state is less for modified P&O. For slow irradiation level change (ramp up 600 to 1000 and ramp down 1000-800) W/m2, the modified P&O shows less tracking diverge. As the irradiation level changes rapidly from 800 to 200 W/m2, it's shown that the modified algorithm attains the steady state faster than the conventional P&O and the average efficiency increased by 4.34%.
A New Maximum Power Point Tracking For Photovoltaic Systems
2008
In this paper a new maximum power point tracking algorithm for photovoltaic arrays is proposed. The algorithm detects the maximum power point of the PV. The computed maximum power is used as a reference value (set point) of the control system. ON/OFF power controller with hysteresis band is used to control the operation of a Buck chopper such that the PV module always operates at its maximum power computed from the MPPT algorithm. The major difference between the proposed algorithm and other techniques is that the proposed algorithm is used to control directly the power drawn from the PV. The proposed MPPT has several advantages: simplicity, high convergence speed, and independent on PV array characteristics. The algorithm is tested under various operating conditions. The obtained results have proven that the MPP is tracked even under sudden change of irradiation level.
This paper proposes a method to improve the efficiency of the P&O maximum power point tracker (MPPT) by reducing the steady state oscillation and eliminating the possibility of the algorithm to lose its tracking direction. A dynamic perturbation step-size is employed to reduce the oscillation, while boundary conditions are introduced to prevent it from diverging away from the MPP. To prove its effectiveness, the proposed P&O is compared with the conventional and adaptive P&O using the Ropp, sinusoidal and ramp irradiance tests. In addition, the performances are evaluated based on a one-day (10 h) irradiance and temperature profile. The algorithm is implemented on a buck-boost converter and benchmarked by the standard MPPT efficiency (ηMPPT) calculation. It was found that, for all the tests, the ηMPPT of the proposed P&O scheme is increased by approximately two percentage points. Besides, the proposed algorithm does not require any extra hardware components; only several lines of additional software codes are to be embedded into the conventional P&O MPPT control program
Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking
Renewable Power Generation, IET, 2010
The optimisation of energy generation in a photovoltaic (PV) system is necessary to let the PV cells operate at the maximum power point (MPP) corresponding to the maximum efficiency. Since the MPP varies, based on the irradiation and cell temperature, appropriate algorithms must be utilised to track the MPP. This is known as maximum power point tracking (MPPT). Different MPPT algorithms, each with its own specific performance, have been proposed in the literature. A so-called perturb and observe (P&O) method is considered here. This method is widely diffused because of its low-cost and ease of implementation. When atmospheric conditions are constant or change slowly, the P&O method oscillates close to MPP. However, when these change rapidly, this method fails to track MPP and gives rise to a waste of part of the available energy. An adaptive P&O method is proposed in this study that has faster dynamics and improved stability compared to the traditional P&O. The MPPT algorithm was set up and validated by means of numerical simulations and experimental tests, confirming the effectiveness of the method.
A Reliable Maximum Power Point Tracker for Photovoltaic Systems
This paper presents a reliable maximum power point tracker (MPPT) for photovoltaic (PV) systems. This MPPT tracks the maximum power point of a PV module by calculating the optimum resistance of the PV module at certain solar radiation level, ambient temperature value and load impedance. The calculated resistance is used to calculate the optimum duty cycle of the DC-DC converter triggering signal using a developed relation. Based on results, the proposed MPPT has better efficiency (95%) than perturbation and observation (P&O) method (92 %). Moreover, the proposed method is faster than P&O method because there is no perturbation around the MPP during the tracking process.
A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems
Energies
Renewable Energy technologies are becoming suitable options for fast and reliable universal electricity access for all. Solar photovoltaic, being one of the RE technologies, produces variable output power (due to variations in solar radiation, cell, and ambient temperatures), and the modules used have low conversion efficiency. Therefore, maximum power point trackers are needed to harvest more power from the sun and to improve the efficiency of photovoltaic systems. This paper reviews the methods used for maximum power point tracking in photovoltaic systems. These methods have been classified into conventional, intelligent, optimization, and hybrid techniques. A comparison has also been made of the different methods based on criteria such as tracking speed, efficiency, cost, stability, and complexity of implementation. From the literature, it is clear that hybrid techniques are highly efficient compared to conventional methods but are more complex in design and more expensive than t...
Energy , especially alternative source of energy is vital for the development of a country. In future, the world anticipates to develop more of its solar resource potential as an alternative energy source to overcome the persistent shortages and unreliability of power supply. In order to maximize the power output the system components of the photovoltaic system should be optimized. For the optimization maximum power point tracking (MPPT) is a promising technique that grid tie inverters , solar battery chargers and similar devices use to get the maximum possible power from one or more solar panels. Among the different methods used to track the maximum power point, Perturb and Observe method is a type of strategy to optimize the power output of an array. In this method, the controller adjusts the voltage by a small amount from the array and measures power, if the power increases, further adjustments in that direction are tried until power no longer increases. In this research paper the system performance is optimized by perturb and observe method using buck boost converter. By varying the duty cycle of the buck boost converter, the source impedance can be matched to adjust the load impedance to improve the efficiency of the system. The Performance has been studied by the MATLAB/Simulink.