Fraud Detection Using Outlier Analysis: A Survey . (original) (raw)

Relative Study of Outlier Detection Procedures

International Journal of Engineering Sciences and Research Technology, 2016

Data Mining just alludes to the extraction of exceptionally intriguing patterns of the data from the monstrous data sets. Outlier detection is one of the imperative parts of data mining which Rexall discovers the perceptions that are going amiss from the normal expected conduct. Outlier detection and investigation is once in a while known as Outlier mining. In this paper, we have attempted to give the expansive and a far reaching literature survey of Outliers and Outlier detection procedures under one rooftop, to clarify the lavishness and multifaceted nature connected with each Outlier detection technique. Besides, we have likewise given a wide correlation of the different strategies for the diverse Outlier techniques. Outliers are the focuses which are unique in relation to or conflicting with whatever is left of the information. They can be novel, new, irregular, strange or uproarious data. Outliers are in some cases more fascinating than most of the information. The principle di...

A Survey for Different Approaches of Outlier Detection in Data Mining

— Outlier is defined as an event that deviates too much from other events. The identification of outlier can lead to the discovery of useful and meaningful knowledge. Outlier means it's happen at some time it's not regular activity. Research about Detection of Outlier has been extensively studies in the past decade. However, most existing research focused on the algorithm based on specific knowledge, compared with outlier detection approach is still rare. In this paper mainly focused on different kind of outlier detection approaches and compares it's prone and cones. In this paper we mainly distribute of outlier detection approach in two parts classic outlier approach and spatial outlier approach. The classical outlier approach identifies outlier in real transaction dataset, which can be grouped into statistical approach, distance approach, deviation approach, and density approach. The spatial outlier approach detect outlier based on spatial dataset are different from transaction data, which can be categorized into spaced approach and graph approach. Finally, the comparison of outlier detection approaches.

Outlier Detection: Applications And Techniques

2012

Outliers once upon a time regarded as noisy data in statistics, has turned out to be an important problem which is being researched in diverse fields of research and application domains. Many outlier detection techniques have been developed specific to certain application domains, while some techniques are more generic. Some application domains are being researched in strict confidentiality such as research on crime and terrorist activities. The techniques and results of such techniques are not readily forthcoming. A number of surveys, research and review articles and books cover outlier detection techniques in machine learning and statistical domains individually in great details. In this paper we make an attempt to bring together various outlier detection techniques, in a structured and generic description. With this exercise, we hope to attain a better understanding of the different directions of research on outlier analysis for ourselves as well as for beginners in this research field who could then pick up the links to different areas of applications in details.

Outlier Detection for Different Applications: Review

2013

Outlier Detection is a Data Mining Application. Outlier contains noisy data which is researched in various domains. The various techniques are already being researched that is more generic. We surveyed on various techniques and applications of outlier detection that provides a novel approach that is more useful for the beginners. The proposed approach helps to clean data at university level in less time with great accuracy. This survey includes the existing outlier techniques and applications where the noisy data exists. Our paper defines critical review on various techniques used in different applications of outlier detection that are to be researched further and they gives a particular type of knowledge based data i.e. more useful in research activities. So where the Anomalies is present it will be detected through outlier detection techniques and monitored accordingly.

A Comparative Study on Outlier Detection Techniques

International Journal of Computer Applications, 2013

Outlier detection is an extremely important problem with direct application in a wide variety of domains. A key challenge with outlier detection is that it is not a wellformulated problem like clustering. In this paper, discussion on different techniques and then comparison by analyzing their different aspects, essentially, time complexity. Every unique problem formulation entails a different approach, resulting in a huge literature on outlier detection techniques. Several techniques have been proposed to target a particular application domain. The classification of outlier detection techniques based on the applied knowledge discipline provides an idea of the research done by different communities and also highlights the unexplored research avenues for the outlier detection problem. Discussed of the behavior of different techniques will be done, in this paper, with respect to the nature. The feasibility of a technique in a particular problem setting also depends on other constraints. For example, Statistical techniques assume knowledge about the underlying distribution characteristics of the data. Distance based techniques are typically expensive and hence are not applied in scenarios where computational complexity is an important issue.

A survey of outlier detection methodologies

Artificial Intelligence Review, 2004

Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review.

Ijesrt International Journal of Engineering Sciences & Research Technology Relative Study of Outlier Detection Procedures

2016

Data Mining just alludes to the extraction of exceptionally intriguing patterns of the data from the monstrous data sets. Outlier detection is one of the imperative parts of data mining which Rexall discovers the perceptions that are going amiss from the normal expected conduct. Outlier detection and investigation is once in a while known as Outlier mining. In this paper, we have attempted to give the expansive and a far reaching literature survey of Outliers and Outlier detection procedures under one rooftop, to clarify the lavishness and multifaceted nature connected with each Outlier detection technique. Besides, we have likewise given a wide correlation of the different strategies for the diverse Outlier techniques. Outliers are the focuses which are unique in relation to or conflicting with whatever is left of the information. They can be novel, new, irregular, strange or uproarious data. Outliers are in some cases more fascinating than most of the information. The principle di...

IEEE Paper - METHODS TO DETECT DIFFERENT TYPES OF OUTLIERS

Outliers are those data that deviates significantly from the remaining data. Outliers has emerging applications in irregular credit card transactions, used to find credit card fraud, or identifying patients who shows abnormal symptoms due to suffering from a particular type of disease. This paper gives an idea about the various approaches and techniques used in outlier detection and the areas in which outlier detection is used and also about how outlier detection is handled in higher dimensional data.

A Survey on Different Unsupervised Techniques to Detect Outliers

2015

In data mining outlier detection refers to the recognition of data point which does not follow the expected pattern or behavior in a particular dataset or is significantly different from other points in a data. In this paper we will review some of the outlier detection techniques and discuss their advantages and disadvantages with respect to various aspects. Outlier detection techniques can be classified into three modes namely unsupervised, semi-supervised and supervised. But, unsupervised outlier detection methods can be further classified as distance based or density based. Many outlier detection techniques are proposed till date. These proposed techniques can be broadly categorized as distribution based (statistical), clustering-based, density-based and model-based