An Amphiphilic Dendrimer for Effective Delivery of Small Interfering RNA and Gene Silencing In Vitro and In Vivo (original) (raw)

Dendrimers as non-viral vectors for siRNA delivery

There is a tremendous interest in moving siRNA therapeutics into a clinical setting for the treatment of various diseases. This in itself however depends largely on the availability of safe and efficient siRNA delivery systems. In this context, dendrimers have attracted considerable attention as siRNA vectors due to their well-defined structures and multivalent features. The present review offers a brief overview of the current status of dendrimers as siRNA delivery vectors, focusing on the different dendrimers investigated for their siRNA delivery ability and the related structural alterations employed to improve their safety and efficiency for this purpose.

Polyurea dendrimer for efficient cytosolic siRNA delivery

RSC Adv., 2014

The design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are 'smart' biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, they are able to automatically and reversibly transform their conformation in response to pH stimulus.

Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer

Nanoscale, 2014

RNA interference (RNAi) with small interfering RNA (siRNA) is expected to offer an attractive means to specifically and efficiently silence disease-associated genes for treating various diseases provided that safe and efficient delivery systems are available. In this study, we have established an arginine-decorated amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic PAMAM dendron bearing arginine terminals as nonviral vector for siRNA delivery. Indeed, this dendrimer proved to be very effective at delivering siRNAs in human prostate cancer PC-3 cells and in human hematopoietic CD34+ stem cells, leading to improved gene silencing compared to the corresponding nonarginine decorated dendrimer. Further investigation confirmed that this dendrimer was granted with the capacity to form stable nanoparticles with siRNA and significantly enhance cellular uptake of siRNA. In addition, this dendrimer revealed no discernible cytotoxicity. All these findings demonstrate ...

Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems

Angewandte Chemie (International ed. in English), 2014

siRNA delivery remains a major challenge in RNAi-based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self-assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphiphilic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer-based adaptive supramolecular assemblies represent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer-based self-assembled drug delivery in biomedical applications.

Evaluation of Amino-Functional Polyester Dendrimers Based on Bis-MPA as Nonviral Vectors for siRNA Delivery

Molecules

Herein, we present the first evaluation of cationic dendrimers based on 2,2-bis(methylol)propionic acid (bis-MPA) as nonviral vectors for transfection of short interfering RNA (siRNA) in cell cultures. The study encompassed dendrimers of generation one to four (G1–G4), modified to bear 6–48 amino end-groups, where the G2–G4 proved to be capable of siRNA complexation and protection against RNase-mediated degradation. The dendrimers were nontoxic to astrocytes, glioma (C6), and glioblastoma (U87), while G3 and G4 exhibited concentration dependent toxicity towards primary neurons. The G2 showed no toxicity to primary neurons at any of the tested concentrations. Fluorescence microscopy experiments suggested that the dendrimers are highly efficient at endo-lysosomal escape since fluorescently labeled dendrimers were localized specifically in mitochondria, and diffuse cytosolic distribution of fluorescent siRNA complexed by dendrimers was observed. This is a desired feature for intracellu...

A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy

Journal of the American Chemical Society

Small interfering RNA (siRNA) is emerging as a novel therapeutic for treating various diseases, provided a safe and efficient delivery is available. In particular, specific delivery to target cells is critical for achieving high therapeutic efficacy while reducing toxicity. Amphiphilic dendrimers are emerging as novel promising carriers for siRNA delivery by virtue of the combined multivalent cooperativity of dendrimers with the self-assembling property of lipid vectors. Here, we report a ballistic approach for targeted siRNA delivery to cancer cells using an amphiphilic dendrimer equipped with a dual targeting peptide bearing a RGDK warhead. According to the molecular design, the amphiphilic dendrimer was expected to deliver siRNA effectively, while the aim of the targeting peptide was to home in on tumors via interaction of its warhead with integrin and the neuropilin-1 receptor on cancer cells. Coating the positively charged siRNA/dendrimer delivery complex with the negatively charged segment of the targeting peptide via electrostatic interactions led to small and stable nanoparticles which were able to protect siRNA from degradation while maintaining the accessibility of RGDK for targeting cancer cells and preserving the ability of the siRNA to escape from endosomes. The targeted system had enhanced siRNA delivery, stronger gene silencing and more potent anticancer activity compared to non-targeted or covalent dendrimer-based systems. In addition, neither acute toxicity nor induced inflammation was observed. Consequently, this delivery system constitutes a promising non-viral vector for targeted delivery and can be further developed to provide RNAi-based personalized medicine against cancer. Our study also gives new perspectives on the use of nanotechnology based on self-assembling dendrimers in various biomedical applications.

Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system

Nanomedicine : nanotechnology, biology, and medicine, 2014

Small interfering RNAs (siRNA) are emerging as novel therapeutic agents, providing competent delivery systems that are available. Dendrimers, a special family of synthetic macromolecules, represent an exciting delivery platform by virtue of their well-defined dendritic structure and unique multivalency and cooperativity confined within a nanoscale volume. Here, we report a Dicer-substrate siRNA (dsiRNA) which, when delivered using a structurally flexible triethanolamine-core poly(amidoamine) dendrimer of generation 5 as the nanocarrier, gives rise to a much greater RNAi response than that produced with conventional siRNA. Further decoration of the dsiRNA/dendrimer complexes with a dual targeting peptide simultaneously promoted cancer cell targeting through interacting with integrins and cell penetration via the interaction with neuropilin-1 receptors, which led to improved gene silencing and anticancer activity. Altogether, our results disclosed here open a new avenue for therapeuti...

Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery

Journal of Controlled Release, 2009

Low penetration ability of Small Interfering RNA (siRNA) through the cellular plasma membrane combined with its limited stability in blood, limits the effectiveness of the systemic delivery of siRNA. In order to overcome such difficulties, we constructed a nanocarrier-based delivery system by taking advantage of the lessons learned from the problems in the delivery of DNA. In the present study, siRNA nanoparticles were first formulated with Poly(Propyleneimine) (PPI) dendrimers. To provide lateral and steric stability to withstand the aggressive environment in the blood stream, the formed siRNA nanoparticles were caged with a dithiol containing cross-linker molecules followed by coating them with Poly(Ethylene Glycol) (PEG) polymer. A synthetic analog of Luteinizing Hormone-Releasing Hormone (LHRH) peptide was conjugated to the distal end of PEG polymer to direct the siRNA nanoparticles specifically to the cancer cells. Our results demonstrated that this layer-by-layer modification and targeting approach confers the siRNA nanoparticles stability in plasma and intracellular bioavailability, provides for their specific uptake by tumor cells, accumulation of siRNA in the cytoplasm of cancer cells, and efficient gene silencing. In addition, in vivo body distribution data confirmed high specificity of the proposed targeting delivery approach which created the basis for the prevention of adverse side effects of the treatment on healthy organs.

Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled In Silico-Experimental Studies. Part I: Covalent siRNA Nanocarriers

Pharmaceutics

Small interfering RNAs (siRNAs) represent a new approach towards the inhibition of gene expression; as such, they have rapidly emerged as promising therapeutics for a plethora of important human pathologies including cancer, cardiovascular diseases, and other disorders of a genetic etiology. However, the clinical translation of RNA interference (RNAi) requires safe and efficient vectors for siRNA delivery into cells. Dendrimers are attractive nanovectors to serve this purpose, as they present a unique, well-defined architecture and exhibit cooperative and multivalent effects at the nanoscale. This short review presents a brief introduction to RNAi-based therapeutics, the advantages offered by dendrimers as siRNA nanocarriers, and the remarkable results we achieved with bio-inspired, structurally flexible covalent dendrimers. In the companion paper, we next report our recent efforts in designing, characterizing and testing a series of self-assembled amphiphilic dendrimers and their r...