Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time (original) (raw)
Abstract
We consider the approximation of the unsteady Stokes equations in a time dependent domain when the motion of the domain is given. More precisely, we apply the finite element method to an Arbitrary Lagrangian Eulerian (ALE) formulation of the system. Our main results state the convergence of the solutions of the semi-discretized (with respect to the space variable) and of the fully-discrete problems towards the solutions of the Stokes system.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (41)
- A. Masud, T.J.R. Hughes, A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Comput. Methods Appl. Mech. Engrg. 146 (1997) 91-126.
- T.E. Tezduyar, M. Behr, J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial- domain/space-time procedure. I. The concept and the preliminary numerical tests, Comput. Methods Appl. Mech. Engrg. 94 (1992) 339-351.
- T.E. Tezduyar, M. Behr, S. Mittal, J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces-the deforming- spatial-domain/space-time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods Appl. Mech. Engrg. 94 (1992) 353-371.
- Y.C. Chang, T.Y. Hou, B. Merriman, S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys. 124 (1996) 449-464.
- R. Glowinski, T.-W. Pan, J. Périaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, in: Finite element methods in large-scale computational fluid dynamics, Minneapolis, MN, 1992, Comput. Methods Appl. Mech. Engrg. 112 (1994) 133-148.
- R. Glowinski, T.-W. Pan, J. Périaux, A fictitious domain method for unsteady incompressible viscous flow modelled by Navier-Stokes equations, in: Domain Decomposition Methods in Science and Engineering (Como, 1992), in: Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 421-431.
- C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220-252.
- J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak, Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, SIAM J. Numer. Anal. 43 (2005) 1536-1571 (electronic).
- S. Bertoluzza, M. Ismail, B. Maury, The fat boundary method: Semi-discrete scheme and some numerical experiments, in: Domain Decomposition Methods in Science and Engineering, in: Lecture Notes in Comput. Sci. Eng., vol. 40, Springer, Berlin, 2005, pp. 513-520.
- B. Maury, A fat boundary method for the Poisson problem in a domain with holes, J. Sci. Comput. 16 (2001) 319-339.
- J. Donea, Arbitrary Lagrangian Eulerian methods, in: Computational Methods for Transient Analysis, in: Computational Methods in Mechanics, vol. 1, North-Holland, Elsevier, 1983.
- C. Farhat, M. Lesoinne, N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-field formulation, geometric conservation and distributed solution, in: Finite Element Methods in Large-Scale Computational Fluid Dynamics (Tokyo, 1994), Internat. J. Numer. Methods Fluids 21 (1995) 807-835.
- H. Guillard, C. Farhat, On the significance of the geometric conservation law for flow computations on moving meshes, Comput. Methods Appl. Mech. Engrg. 190 (2000) 1467-1482.
- L. Formaggia, F. Nobile, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 7 (1999) 105-131.
- F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics, Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Suisse, 2001.
- L. Gastaldi, A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 9 (2001) 123-156.
- B. Maury, Characteristics ALE method for the unsteady 3D Navier-Stokes equations with a free surface, Int. J. Comp. Fluid Dyn. 6 (1996) 175-188.
- F. Duarte, R. Gormaz, S. Natesan, Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries, Comput. Methods Appl. Mech. Engrg. 193 (2004) 4819-4836.
- V. Girault, H. López, B. Maury, One time-step finite element discretization of the equation of motion of two-fluid flows, Numer. Methods Partial Differential Equations 22 (2006) 680-707.
- H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech. 6 (2004) 21-52.
- M. Boulakia, Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, J. Math. Pures Appl. 84 (9) (2005) 1515-1554.
- B. Desjardins, M.J. Esteban, C. Grandmont, P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut. 14 (2001) 523-538.
- A. Chambolle, B. Desjardins, M.J. Esteban, C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech. 7 (2005) 368-404.
- O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math. 38 (1981/82) 309-332.
- E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math. 53 (1988) 459-483.
- Y. Achdou, J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal. 37 (2000) 799-826 (electronic).
- C. Grandmont, V. Guimet, Y. Maday, Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction, Math. Models Methods Appl. Sci. 11 (2001) 1349-1377.
- M. Ôtani, Y. Yamada, On the Navier-Stokes equations in noncylindrical domains: An approach by the subdifferential operator theory, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978) 185-204.
- A. Inoue, M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) 303-319.
- R. Salvi, The exterior nonstationary problem for the Navier-Stokes equations in regions with moving boundaries, J. Math. Soc. Japan 42 (1990) 495-509.
- R. Salvi, On the existence of weak solutions of a nonlinear mixed problem for the Navier-Stokes equations in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 213-221.
- I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73) 179-192.
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974) 129-151.
- B. Maury, Direct simulations of 2D fluid-particle flows in biperiodic domains, J. Comput. Phys. 156 (1999) 325-351.
- S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, second ed., in: Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002.
- L.B. Wahlbin, Local behavior in finite element methods, in: Handbook of Numerical Analysis, in: Handb. Numer. Anal., II, vol. II, North-Holland, Amsterdam, 1991, pp. 353-522.
- Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976) 491-515.
- P. Grisvard, Elliptic problems in nonsmooth domains, in: Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
- M.E. Gurtin, An introduction to continuum mechanics, in: Mathematics in Science and Engineering, vol. 158, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981.
- V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations, in: Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986, Theory and algorithms.
- P.G. Ciarlet, The finite element method for elliptic problems, in: Classics in Applied Mathematics, vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002, Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].