Bioconservation of Historic Stone Buildings—An Updated Review (original) (raw)
Related papers
Bioremediation of weathered-building stone surfaces
Trends in Biotechnology, 2006
Atmospheric pollution and weathering of stone surfaces in urban historic buildings frequently results in disfigurement or damage by salt crust formation (often gypsum), presenting opportunities for bioremediation using microorganisms. Conventional techniques for the removal of these salt crusts from stone have several disadvantages: they can cause colour changes; adversely affect the movement of salts within the stone structure; or remove excessive amounts of the original surface. Although microorganisms are commonly associated with detrimental effects to the integrity of stone structures, there is growing evidence that they can be used to treat this type of stone deterioration in objects of historical and cultural significance. In particular, the ability and potential of different microorganisms to either remove sulfate crusts or form sacrificial layers of calcite that consolidate mineral surfaces have been demonstrated. Current research suggests that bioremediation has the potential to offer an additional technology to conservators working to restore stone surfaces in heritage buildings.
Annals of Microbiology, 2014
Your article is protected by copyright and all rights are held exclusively by Springer-Verlag Berlin Heidelberg and the University of Milan. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to selfarchive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
Biological colonization on stone monuments: A new low impact cleaning method
Journal of Cultural Heritage, 2018
In restoration and conservation practices, biocide treatments are considered one of the most practical approaches to remove biological colonization on artworks, including stone. Numerous studies have focused on the short-and long-term effects of these treatments and recently many alternative methods to reduce their potential hazards to human health and the environment have been proposed. In this study, a solvent gel containing dimethyl sulfoxide (DMSO), already used to clean paintings, was applied on colonized marble artifacts at the monumental cemetery of Bonaria (Cagliari-Italy) to remove biological patinas. The protocol efficiency was evaluated by scanning electronic microscopy, rugosimetric and colorimetric measurements and growth tests. A comparative study also was performed to validate the method using biocides currently used in conservation. The results demonstrate that DMSO solvent gel is efficient at removing patinas on stone, of low impact, easy to use, inexpensive and can be considered a more practical alternative to biocide treatments.
Application of Microbial Biotechnology in Conservation and Restoration of Stone Monument
Journal of Applied Biotechnology Reports, 2017
Treatments employed for the consolidation of monumental stones made of limestone due to incompatibility from the substrate and cement used for consolidation, plugging of pores induced by the new cement, leading to the acceleration of stone alteration. Microbial precipitation with a layer of calcium carbonate generated by bacteria might offer a solution to this dilemma because the layer would not block the natural pore structure, thus permitting free passage of soluble salts through the stone. In this study, an attempt has been made to provide an overview of the microbial induced carbonate precipitation as promising technology for bioremediation of such structures. At the first, the active microorganisms in the conservation of stone monuments transferred to the laboratory using the swap dipped in nutrient broth at a historic cemetery. After incubation and growth of colonies, Gram-positive bacilli were detected. Then pure single colonies were transferred to blood agar medium and incub...
Applied microbiology and biotechnology in the conservation of stone cultural heritage materials
Applied microbiology and biotechnology, 2006
The contribution of applied microbiology and biotechnology for the preservation and restoration of culturally relevant stoneworks has been used only to a minor extent. Until recently it only involved the identification of the living organisms accountable for the deterioration of those materials by classic phenotypic identification methods. This seems to be changing, given the amount of work recently published that focuses in the introduction of molecular-based techniques for the detection of microorganisms in historic stone. Such techniques complement and expand the information up till now gathered by conventional identification methods. Along with this, efforts are being made to develop and implement bio-based methodologies that may actively contribute to the bioremediation of weathered historic stoneworks. The present minireview aims to provide an overview of recent findings on these matters.
Role of Micro-Organisms in Biodeterioration of Sandstone in Heritage Buildings
Journal of Advanced Research in Construction and Urban Architecture, 2021
The growing concern for the preservation and protection of heritage building has led to a greater interest in the findings of biodeterioration occurring on these buildings. The cultural heritage objects are damaged by various agents like atmospheric agents, condensation or capillary humidity, temperature range, human action and microorganisms. A wide variety of organisms like bacteria, fungi, algae and plants etc. have been reported in the degradation of heritage structures. Microorganisms ability in production of pigments and organic acid plays a crucial role in discoloration and degradation of different types of stone in cultural heritage building objects. The study focuses on the types of microorganisms that are responsible for the biodeterioration of heritage buildings as well as the preventive measure and treatment done to restore the original form of the sandstone structures. The research is also supported and reinforced with a case study of Sher Shah Suri's tomb at Sasaram, Bihar.
Science of The Total Environment, 2011
Microbially Induced Carbonate Precipitation is proposed as an environmentally friendly method to protect decayed ornamental stone and introduced in the field of preservation of Cultural Heritage. Recent conservation studies performed under laboratory conditions on non-sterile calcarenite stones have successfully reported on the application of a suitable nutritional solution, inoculated and non-inoculated with Myxococcus xanthus, as a bioconsolidation treatment. Furthermore, this procedure has been applied in situ, very recently, to selected historical buildings in Granada, Spain. For the first time, we evaluate the efficiency and risks of the in situ application of the above mentioned treatments onto two historical buildings in Granada. The evaluation consists of a detailed investigation of the micro-biota actively growing during the seven days of the treatmentsshort-term monitoring and of that remaining on the stones after six and twelve months of the applicationlong-term monitoring. A molecular strategy, including DNA extraction, PCR amplification of 16S rRNA sequences, construction of clone libraries and fingerprinting by DGGE (Denaturing Gradient Gel Electrophoresis) analysis followed by sequencing was used to gain insight into the microbial diversity present on the differentially treated stones. The monitoring of M. xanthus was performed by PCR using species-specific primers. Similar dynamics were triggered on both buildings by the application of the nutritional solution (inoculated or non-inoculated). 16S rDNA sequencing revealed the dominant occurrence of members belonging to the Firmicutes and Proteobacteria during the seven days of the treatment, whereas after one year the order Bacillales of the phylum Firmicutes was the predominantly detected microorganisms. M. xanthus could be detected only during the seven days of the treatment. The treatments seem to activate no dangerous microorganisms and furthermore, to select the remainder of a homogeneous group of carbonatogenic bacteria on the stones after a long period of time.
Science of The Total …, 2011
Microbially Induced Carbonate Precipitation is proposed as an environmentally friendly method to protect decayed ornamental stone and introduced in the field of preservation of Cultural Heritage. Recent conservation studies performed under laboratory conditions on non-sterile calcarenite stones have successfully reported on the application of a suitable nutritional solution, inoculated and non-inoculated with Myxococcus xanthus, as a bioconsolidation treatment. Furthermore, this procedure has been applied in situ, very recently, to selected historical buildings in Granada, Spain. For the first time, we evaluate the efficiency and risks of the in situ application of the above mentioned treatments onto two historical buildings in Granada. The evaluation consists of a detailed investigation of the micro-biota actively growing during the seven days of the treatmentsshort-term monitoring and of that remaining on the stones after six and twelve months of the applicationlong-term monitoring. A molecular strategy, including DNA extraction, PCR amplification of 16S rRNA sequences, construction of clone libraries and fingerprinting by DGGE (Denaturing Gradient Gel Electrophoresis) analysis followed by sequencing was used to gain insight into the microbial diversity present on the differentially treated stones. The monitoring of M. xanthus was performed by PCR using species-specific primers. Similar dynamics were triggered on both buildings by the application of the nutritional solution (inoculated or non-inoculated). 16S rDNA sequencing revealed the dominant occurrence of members belonging to the Firmicutes and Proteobacteria during the seven days of the treatment, whereas after one year the order Bacillales of the phylum Firmicutes was the predominantly detected microorganisms. M. xanthus could be detected only during the seven days of the treatment. The treatments seem to activate no dangerous microorganisms and furthermore, to select the remainder of a homogeneous group of carbonatogenic bacteria on the stones after a long period of time.
Feasibility of Removing Surface Deposits on Stone Using Biological and Chemical Remediation Methods
Microbial Ecology, 2010
The study was conducted on alterations found on stone artwork and integrates microbial control and a biotechnological method for the removal of undesirable chemical substances. The Demetra and Cronos sculptures are two of 12 stone statues decorating the courtyard of the Buonconsiglio Castle in Trento (Italy). An initial inspection of the statues revealed putative black crusts and highlighted the microbial contamination causing discoloration. In 2006, the Cultural Heritage Superintendence of Trento commissioned us to study and remove these chemical and biological stains. Stereomicroscopy characterised the stone of the sculptures as oolitic limestone, and infrared analyses confirmed the presence of black crusts. To remove the black crusts, we applied a remediation treatment of sulphate-reducing bacteria, which removes the chemical alteration but preserves the original stone and the patina noble. Using traditional and biomolecular methods, we studied the putative microbial contamination and confirmed the presence of biodeteriogens and chose biocide Biotin N for the removal of the agents causing the discolouration. Denaturing gradient gel electrophoresis fluorescent in situ hybridisation established that Cyanobacteria and green algae genera were responsible for the green staining whereas the black microbial contamination was due to dematiaceous fungi. After the biocide Biotin N treatment, we applied molecular methods and demonstrated that the Cyanobacteria, and most of the green algae and dematiaceous fungi, had been efficiently removed. The reported case study reveals that conservators can benefit from an integrated biotechnological approach aimed at the biocleaning of chemical alterations and the abatement of biodeteriogens.
Heritage
Microbial cells that produce biofilms, or patinas, on historic buildings are affected by climatic changes, mainly temperature, rainfall and air pollution, all of which will alter over future decades. This review considers the colonization of stone buildings by microorganisms and the effects that the resultant biofilms have on the degradation of the structure. Conservation scientists require a knowledge of the potential effects of microorganisms, and the subsequent growth of higher organisms such as vascular plants, in order to formulate effective control strategies. The vulnerability of various structural materials (“bioreceptivity”) and the ways in which the environmental factors of temperature, precipitation, wind-driven rain and air pollution influence microbial colonization are discussed. The photosynthetic microorganisms, algae and cyanobacteria, are acknowledged to be the primary colonizers of stone surfaces and many cyanobacterial species are able to survive climate extremes;...