A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea (original) (raw)
Related papers
A Multiple QTL-Seq Strategy Delineates Potential Genomic Loci Governing Flowering Time in Chickpea
Frontiers in plant science, 2017
Identification of functionally relevant potential genomic loci using an economical, simpler and user-friendly genomics-assisted breeding strategy is vital for rapid genetic dissection of complex flowering time quantitative trait in chickpea. A high-throughput multiple QTL-seq strategy was employed in two inter (Cicer arietinum desi accession ICC 4958 × C reticulatum wild accession ICC 17160)- and intra (ICC 4958 × C. arietinum kabuli accession ICC 8261)-specific RIL mapping populations to identify the major QTL genomic regions governing flowering time in chickpea. The whole genome resequencing discovered 1635117 and 592486 SNPs exhibiting differentiation between early- and late-flowering mapping parents and bulks, constituted by pooling the homozygous individuals of extreme flowering time phenotypic trait from each of two aforesaid RIL populations. The multiple QTL-seq analysis using these mined SNPs in two RIL mapping populations narrowed-down two longer (907.1 kb and 1.99 Mb) majo...
Candidate Gene Association Mapping of Arabidopsis Flowering Time
Genetics, 2009
The pathways responsible for flowering time in Arabidopsis thaliana comprise one of the best-characterized genetic networks in plants. We harness this extensive molecular genetic knowledge to identify potential flowering time quantitative trait genes (QTGs) through candidate gene association mapping using 51 flowering time loci. We genotyped common single nucleotide polymorphisms (SNPs) at these genes in 275 A.
Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea (Cicer arietinum L.)
Frontiers in plant science, 2017
Flowering time is an important trait for adaptation and productivity of chickpea in the arid and the semi-arid environments. This study was conducted for molecular mapping of genes/quantitative trait loci (QTLs) controlling flowering time in chickpea using F2 populations derived from four crosses (ICCV 96029 × CDC Frontier, ICC 5810 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier). Genetic studies revealed monogenic control of flowering time in the crosses ICCV 96029 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier, while digenic control with complementary gene action in ICC 5810 × CDC Frontier. The intraspecific genetic maps developed from these crosses consisted 75, 75, 68 and 67 markers spanning 248.8 cM, 331.4 cM, 311.1 cM and 385.1 cM, respectively. A consensus map spanning 363.8 cM with 109 loci was constructed by integrating four genetic maps. Major QTLs corresponding to flowering time genes efl-1 from ICCV 96029, efl-3 from BGD 132 and ...
The Quantitative Genetics of Flowering Traits in Wide Crosses of Chickpea
Agriculture
Chickpea (Cicer arietinum L.) is one of the most ımportant food legume crops in the world. Chickpea is valued for its nutritive seed composition, which is high in protein content and used increasingly as a substitute for animal protein. Days to fırst flowerıng is an important component of the adaptation and productivity of chickpea in rainfed environments characterized by terminal drought and heat stress. This study aimed to identify the inheritance pattern and identify quantitative trait loci (QTLs) for days to first flowering and flowering color in F2:4 generation nested association mapping (NAM) populations of chickpea obtained using wide crosses between Gokce as the cultivated variety and wild accessions of C. reticulatum and C. echinospermum. A total of ten populations of 113 to 191 individuals each were grown under field conditions near Sanliurfa, Turkey. Two populations were genotyped for 46 single nucleotide polymorphism (SNP) markers, enabling QTL analysis. Flowering time d...
Plant, cell & environment, 2015
Optimum flowering time is the key to maximise canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify sixty-nine SNP markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional 5 SNPs were localised within 14 Kb of a previously identified QTL for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. GWAS analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that cont...
Allelic relationships of flowering time genes in chickpea
Euphytica, 2014
Flowering time and crop duration are the most important traits for adaptation of chickpea (Cicer arietinum L.) to different agro-climatic conditions. Early flowering and early maturity enhance adaptation of chickpea to short season environments. This study was conducted to establish allelic relationships of the early flowering genes of ICC 16641, ICC 16644 and ICCV 96029 with three known early flowering genes, efl-1 (ICCV 2), ppd or efl-2 (ICC 5810), and efl-3 (BGD 132). In all cases, late flowering was dominant to early-flowering. The results indicated that the efl-1 gene identified from ICCV 2 was also present in ICCV 96029, which has ICCV 2 as one of the parents in its pedigree. ICC 16641 and ICC 16644 had a common early flowering gene which was not allelic to other reported early flowering genes. The new early flowering gene was designated efl-4. In most of the crosses, days to flowering was positively correlated with days to maturity, number of pods per plant, number of seeds per plant and seed yield per plant and negatively correlated or had no correlation with 100-seed weight. The double-pod trait improved grain yield per plant in the crosses where it delayed maturity. The information on allelic relationships of early flowering genes and their effects on yield and yield components will be useful in chickpea breeding for desired phenology.
Acta botanica Gallica: bulletin de la Société botanique de France
Often used as a proxy for the transition to reproduction, flowering time (FT) is an integrative trait of two successive biological processes, i.e. bolting time (BT) and the interval between bolting and flowering time (INT). In this study, we aimed to identify candidate genes associated with these composite traits in Arabidopsis thaliana using a field experiment. Genome-wide association (GWA) mapping was performed on BT, INT and FT based on a sample of 179 worldwide natural accessions genotyped for 216,509 SNPs. The high resolution conferred by GWA mapping indicates that FT is an integrative trait at the genetic level, with distinct genetics for BT and INT. BT is shaped largely by genes involved in the circadian clock whereas INT is shaped by genes involved in both the hormone pathways and cold acclimation. Finally, the florigen TSF appears to be the main integrator of environmental and internal signals in ecologically realistic conditions. Based on FT scored in a previous field expe...
A global view of transcriptome dynamics during flower development in chickpea by deep sequencing
Measurement of gene expression can provide important clues about gene function and molecular basis of developmental processes. Here, we have analysed the chickpea transcriptome in vegetative and flower tissues by exploiting the potential of high-throughput sequencing to measure gene expression. We mapped more than 295 million reads to quantify the transcript abundance during flower development. We detected the expression of more than 90% genes in at least one tissue analysed. We found quite a large number of genes were differentially expressed during flower development as compared to vegetative tissues. Further, we identified several genes expressed in a stage-specific manner. Various transcription factor families and metabolic pathways involved in flower development were elucidated. The members of MADSbox family were most represented among the transcription factor genes up-regulated during various stages of flower development. The abundant expression of several well-known genes implicated in flower development in chickpea flower development stages confirmed our results. In addition, we detected the expression specificities of lineage-specific genes during flower development. The expression data presented in this study is the most comprehensive dataset available for chickpea as of now and will serve as resource for unraveling the functions of many specific genes involved in flower development in chickpea and other legumes.
Physiology and Molecular Biology of Plants, 2021
Common bean is a nutrient-dense legume crop serving as a source of food for millions of people. Characterization of unexplored common bean germplasm to unlock the phenotypic and genetic variations is still needed to explore the breeding potential of this crop. The current study aimed to dissect the genetic basis having association for days to flowering (DF). A total of 188 common bean accessions collected from 19 provinces of Turkey were used as plant material under five environments and two locations. Analysis of variance (ANOVA) revealed that genotypes and genotype by environment interaction have significant effects on DF. A total of 10 most stable accessions were evaluated from stability analysis. Overall maximum (75) and minimum (54) DF were observed for Hakkari-51 and Mus-46 accessions, respectively. The implemented constellation plot divided studied germplasm according to their DF and growth habit. A total of 7900 DArTseq markers were used for association analysis. Mixed linear model using the Q ? K Model resulted a total of 18 DArTseq markers from five environments. DArT-8668385 marker identified in Bolu during 2016 was also associated with DF in Sivas during 2017. Combined data of five years resulted a total of four markers (DArT-22346534, DArT-3369768, DArT-3374613, and DArT-3370801) having significant association (p \ 0.01) for DF. DArT-22346534 present on Pv 08 accounted a maximum of 9.89% variation to the studied trait. A total of four putative candidate genes were predicted from sequences reflecting homology to identified four DArTseq markers. We envisage that exploitation of identified DArTseq markers will hopefully beneficial for the development of new common bean varieties having better adaptation ability to changing climatic conditions.
Scientific Reports
Pigeonpea, a tropical photosensitive crop, harbors significant diversity for days to flowering, but little is known about the genes that govern these differences. Our goal in the current study was to use genome wide association strategy to discover the loci that regulate days to flowering in pigeonpea. A single trait as well as a principal component based association study was conducted on a diverse collection of 142 pigeonpea lines for days to first and fifty percent of flowering over 3 years, besides plant height and number of seeds per pod. The analysis used seven association mapping models (GLM, MLM, MLMM, CMLM, EMLM, FarmCPU and SUPER) and further comparison revealed that FarmCPU is more robust in controlling both false positives and negatives as it incorporates multiple markers as covariates to eliminate confounding between testing marker and kinship. Cumulatively, a set of 22 SNPs were found to be associated with either days to first flowering (DOF), days to fifty percent flo...