Immunocytochemical study of a temperature-sensitive choline acetyltransferase mutant of Drosophila melanogaster (original) (raw)
Journal of Comparative Neurology, 1989
Abstract
Using a monoclonal antibody to choline acetyltransferase (ChAT), we have identified immunoreactive synaptic terminals in the neuropil regions of the cephalic ganglion of Drosophila melanogaster. This study demonstrates the distribution of antibody-labeled structures within the optic lobe, and then investigates the immunoreactivity altered by mutation in two temperature-sensitive ChAT alleles, chats-1 and chats-2. The general structure of the optic lobe was first observed by means of the silver impregnation technique. Then the presence of ChAT immunoreactivity was determined by the application of antibody [1G4] conjugated with HRP to frozen sections, followed by the 3,3'-diamino-benzidine tetratinct layers, which correspond to the three synaptic layers of the laminarneurons, in the medulla. Also, staining appeared in four distinct layers in the lobula. In addition, weaker staining was observed in the lamina, which corresponds to the retinula cell terminals. Somal layers were not stained. In Canton-S (wild-type), the three medullar layers stain distinctly at both 19 degrees C and 30 degrees C. In chats-1 at 19 degrees C, the stain appeared in the same layers as that of Canton-S, but with somewhat lower density. In chats-2 at 19 degrees C, the density of the stain was even lower. The densities of the stain in these mutants were further decreased after exposing the flies to 30 degrees C. The decreases were dependent on the length of exposure to the higher temperature. The decrease in stain of the specimens obtained after 24 hours exposure to 30 degrees C was clearly recognizable in both chats-1 and chats-2.(ABSTRACT TRUNCATED AT 250 WORDS)
Paul Salvaterra hasn't uploaded this paper.
Let Paul know you want this paper to be uploaded.
Ask for this paper to be uploaded.