Role of nucleus accumbens glutamatergic plasticity in drug addiction (original) (raw)

2013, Neuropsychiatric Disease and Treatment

Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca 2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc. Antagonism of the CP-AMPARs reduces cravings. It is necessary to pursue further exploration of the AMPA receptor subunit composition and variations at the level of the NAc for a better understanding of glutamatergic plastic changes. It is known that cocaine and morphine are able to induce changes in dendritic spine morphology by modifying actin cycling. These changes include an initial increase in spine head diameter and increases in AMPA receptor expression, followed by a second stage of spine head diameter retraction and reduction of the AMPA receptors' expression in spines. Besides glutamate and dopamine, other factors, like brain-derived neurotrophic factor (BDNF), can influence NAc activity and induce changes in dendritic spine density. BDNF also induces drug-related behaviors like self-administration and relapse. Neither apoptosis nor neurogenesis plays a relevant role in the neurobiological processes subjacent to cocaine addiction in adults (rodent or human). Different therapeutic drugs like N-acetylcysteine (NAC), modafinil, acamprosate, and topiramate have been tested in preclinical and/or clinical models for alleviating drug relapse. Moreover, these therapeutic drugs target the glutamatergic circuitry between the PFC and the NAc. NAC and acamprosate have shown inconsistent results in clinical trials. Modafinil and topiramate have shown some success, but more clinical trials are necessary. Based on the current review