The role of unstable shoe constructions for the improvement of postural control (original) (raw)
Related papers
Age and Ageing, 2006
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Voluntary control of postural equilibrium patterns
Behavioural Brain Research, 2003
The ability to voluntarily transit from one whole-body movement to another is based on the multisensory integration of visual, vestibular, and somatosensory information. The role of functional sensory ranges and mechanical constraints on the ability to voluntarily transit between whole-body movements was studied by requiring subjects to switch from a head-fixed-to-surface to head-fixed-in-space postural pattern (and vice versa). The head-fixed-to-surface pattern required an erect stance characterized by an in-phase relationship between center of pressure (CoP) and platform motion. The head-fixed-in-space pattern required subjects to fix trunk-head position in-space while producing an anti-phase relationship between CoP and platform motion. The voluntary transition was performed with and without vision while standing on a surface oscillating in the anterior-posterior (A/P) direction. The support surface oscillated at five frequencies (0.2-1 Hz) with amplitude fixed at 15 cm. The voluntary transition was initiated with an auditory cue. The appropriate CoP-platform phase relationship for the two postural patterns was produced for all frequencies with and without vision. Upper-trunk kinematics revealed that subjects often failed to produce the head-fixed-to-surface pattern for frequencies ≥0.6 Hz, while producing the head-fixed-in-space pattern at all frequencies with vision. Without vision, neither pattern was produced consistently based on upper-trunk kinematics. These findings demonstrate separate control processes for upper-and lower-body motion and that functional sensory ranges and mechanical constraints can facilitate or inhibit voluntary production of whole-body movements based on these control processes. The results are discussed in reference to neurological substrates that may be involved in the planning and execution of motor set-switching. The experimental protocol we employ may also have application as a diagnostic tool for the evaluation of postural deficits.
Journal of Electromyography and Kinesiology, 2010
The central nervous system (CNS) utilizes anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain equilibrium while standing. It is known that these postural adjustments involve displacements of the center of mass (COM) and center of pressure (COP). The purpose of the study was to investigate the relationship between APAs and CPAs from a kinetic and kinematic perspective. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level while standing. Kinematic and kinetic data were recorded and analyzed during the time duration typical for anticipatory and compensatory postural adjustments. When the perturbations were unpredictable, the COM and COP displacements were larger compared to predictable conditions with APAs. Thus, the peak of COM displacement, after the pendulum impact, in the posterior direction reached 28 ± 9.6 mm in the unpredictable conditions with no APAs whereas it was 1.6 times smaller, reaching 17 ± 5.5 mm during predictable perturbations. Similarly, after the impact, the peak of COP displacement in the posterior direction was 60 ± 14 mm for unpredictable conditions and 28 ± 3.6 mm for predictable conditions. Finally, the times of the peak COM and COP displacements were similar in the predictable and unpredictable conditions. This outcome provides additional knowledge about how body balance is controlled in presence and in absence of information about the forthcoming perturbation. Moreover, it suggests that control of posture could be enhanced by better utilization of APAs and such an approach could be considered as a valuable modality in the rehabilitation of individuals with balance impairment.
Somatosensory & motor research, 2012
Understanding postural control requires considering various mechanisms underlying a person´s ability to stand, to walk and to interact with the environment safely and efficiently. The purpose of this paper is to summarise the functional relation between biomechanical and neurophysiological perspectives related to postural control in both standing and walking based on movement efficiency. Evidence related to the biomechanical and neurophysiological mechanisms is explored as well as the role of proprioceptive input on postural and movement control.
Proprioceptive control of posture: a review of new concepts
Gait & Posture, 1998
The assumption that proprioceptive inputs from the lower legs are used to trigger balance and gait movements is questioned in this review (an outgrowth of discussions initiated during the Neural Control of Movement Satellite meeting held in Cozumel, Mexico, April 1997). Recent findings presented here suggest that trunk or hip inputs may be more important in triggering human balance corrections and that proprioceptive input from the lower legs mainly helps with the final shaping and intermuscular coordination of postural and gait movements. Three major questions were considered. First, what role, if any, do lower-leg proprioceptive inputs play in the triggering of normal balance corrections? If this role is negligible, which alternative proprioceptive inputs then trigger balance corrections? Second, what is the effect of proprioceptive loss on the triggering of postural and gait movements? Third, how does proprioceptive loss affect the output of central pattern generators in providing the final shaping of postural movements? The authors conclude that postural and gait movements are centrally organized at two levels. The first level involves the generation of the basic directionally-specific response pattern based primarily on hip or trunk proprioceptive input and secondarily on vestibular inputs. This pattern specifies the spatial characteristics of muscle activation, that is which muscles are primarily activated, as well as intermuscular timing, or the sequence in which muscles are activated. The second level is involved in the shaping of centrally set activation patterns on the basis of multi-sensorial afferent input (including proprioceptive input from all body segments and vestibular sensors) in order that movements can adapt to different task conditions.
Journal of Electromyography and Kinesiology, 2010
The central nervous system (CNS) utilizes anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain equilibrium while standing. It is known that these postural adjustments involve displacements of the center of mass (COM) and center of pressure (COP). The purpose of the study was to investigate the relationship between APAs and CPAs from a kinetic and kinematic perspective. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level while standing. Kinematic and kinetic data were recorded and analyzed during the time duration typical for anticipatory and compensatory postural adjustments. When the perturbations were unpredictable, the COM and COP displacements were larger compared to predictable conditions with APAs. Thus, the peak of COM displacement, after the pendulum impact, in the posterior direction reached 28 ± 9.6 mm in the unpredictable conditions with no APAs whereas it was 1.6 times smaller, reaching 17 ± 5.5 mm during predictable perturbations. Similarly, after the impact, the peak of COP displacement in the posterior direction was 60 ± 14 mm for unpredictable conditions and 28 ± 3.6 mm for predictable conditions. Finally, the times of the peak COM and COP displacements were similar in the predictable and unpredictable conditions. This outcome provides additional knowledge about how body balance is controlled in presence and in absence of information about the forthcoming perturbation. Moreover, it suggests that control of posture could be enhanced by better utilization of APAs and such an approach could be considered as a valuable modality in the rehabilitation of individuals with balance impairment.
Experimental Brain Research, 2001
In this study, we examined flexibility in postural coordination by inducing transitions between postural patterns. Previous work demonstrated that the postural control system produces two task-specific postural patterns as a function of the frequency of support surface translation. For slow translation frequencies (<0.5 Hz), subjects ride on the platform reminiscent of upright stance (ride pattern), and for fast frequencies (≥0.75 Hz) subjects actively fixed the head and trunk in space (head fixed pattern) during anterior-posterior platform motion.
Physiotherapy Theory and Practice, 1992
The reorganization of standing balance after a lower limb amputation is considered with emphasis on persons with an acquired un¡lateral amputation above the ankle and below the hip joint. ln the first section, three major peripheral motor and sensory impairments are discussed: (a) a lack of ankle torque generation to restore equilibrium in the sagittal plane, (b) a lack of weight-shifting capacity to control posture in the frontal plane, (c) a distorted somatosensory input from the síde of amputation. ln the second part of the paper, it is argued that a lower limb amputation, as any other seríous peripheral lesion, also affects the highest levels of the sensorimotor system, because the functional recovery after amputation requires a central adaptation to the alterations of peripheral motor and sensory conditions. A reduction in the cognitive regulation of posture as well as a decrease in visual dependency are proposed as two of the most critical parameters of the long-term central adaptation process and as relevant indicators of the restoration of (the safe performance of) gross-motor skills.
Identification of the Unstable Human Postural Control System
Maintaining upright bipedal posture requires a control system that continually adapts to changing environmental conditions, such as different support surfaces. Behavioral changes associated with different support surfaces, such as the predominance of an ankle or hip strategy, is considered to reflect a change in the control strategy. However, tracing such behavioral changes to a specific component in a closed loop control system is challenging. Here we used the joint input–output (JIO) method of closed-loop system identification to identify the musculoskeletal and neural feedback components of the human postural control loop. The goal was to establish changes in the control loop corresponding to behavioral changes observed on different support surfaces. Subjects were simultaneously perturbed by two independent mechanical and two independent sensory perturbations while standing on a normal or short support surface. The results show a dramatic phase reversal between visual input and body kinematics due to the change in surface condition from trunk leads legs to legs lead trunk with increasing frequency of the visual perturbation. Through decomposition of the control loop, we found that behavioral change is not necessarily due to a change in control strategy, but in the case of different support surfaces, is linked to changes in properties of the plant. The JIO method is an important tool to identify the contribution of specific components within a closed loop control system to overall postural behavior and may be useful to devise better treatment of balance disorders.