Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling (original) (raw)

Staphylococcal Protein A Promotes Osteoclastogenesis through MAPK Signaling During Bone Infection

Journal of cellular physiology, 2017

Bone infection is a common and serious complication in the orthopedics field, which often leads to excessive bone destruction and non-union. Osteoclast is the only type of cells which have the function of bone resorption. Its over activation is closely related to excessive bone loss. Staphylococcus aureus (S.aureus) is a major pathogen causing bone infection, which can produce a large number of strong pathogenic substances staphylococcal protein A (SPA). However, few studies were reported about the effects of SPA on osteoclastogenesis. In our study, we observed that S.aureus activated osteoclasts and promoted bone loss in bone infection specimens. Then, we investigated the effects of SPA on RANKL-induced osteoclastogenesis in vitro, the results revealed that SPA promoted osteoclastic differentiation and fusion, and enhanced osteoclastic bone resorption. In addition, we also showed that SPA upregulated the expression of NFATc1 and c-FOS through the activation of MAPK signaling to pro...

Staphylococcus aureus capsular material promotes osteoclast formation

Injury, 2006

1 Osteomyelitis, which is most frequently due to infection by Staphylococcus aureus, commonly causes bone destruction. S. aureus is known to secrete a number of surface-associated proteins that are potent stimulators of bone resorption. The precise cellular and humoral mechanisms that mediate this stimulatory effect are uncertain. In this study, we have determined whether osteoclast formation and resorption is directly promoted by surface-associated proteins. Surface-associated material (SAM) obtained from a 24-hour culture of S. aureus was added to cultures of mouse and human monocytes. Human monocyte cultures were incubated in the presence and absence of a soluble receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony stimulating factor (M-CSF). In cultures where M-CSF, RANKL, and SAM were added together, osteoclast formation did not exceed that seen in cultures with M-CSF and RANKL. In keeping with this finding, SAM did not increase osteoclast formation and resorption when mouse monocytes were cocultured with RANKL-expressing osteoblasts. In the absence of RANKL, however, SAM was capable of inducing osteoclast formation in cultures of human monocytes. This finding was evidenced by the generation of vitronectin receptor and tartrate-resistant acid phosphatasepositive multinucleated cells that were capable of lacunar resorption. Inhibitors of RANKL-dependent (RANK:Fc, OPG) and RANKL-independent (anti-TNF-α, gp130, IL-8, TGF-β) osteoclast formation did not inhibit SAM-induced osteoclast formation. SAM did not stimulate mature osteoclast resorption activity. These findings indicate that RANKL, which is present in the circulation as a soluble factor, does not play a role in osteoclast formation in the presence of S. aureus SAM and that S. aureus SAM contains a soluble factor that promotes osteoclast formation by a RANKL-independent mechanism.

Staphylococcus aureus infects osteoclasts and replicates intracellularly

2019

Osteomyelitis (OM), or inflammation of bone tissue, occurs most frequently as a result of bacterial infection and severely perturbs bone structure. The majority of OM is caused by Staphylococcus aureus, and even with proper treatment, OM has a high rate of recurrence and chronicity. While S. aureus has been shown to infect osteoblasts, persist intracellularly, and promote the release of pro-osteoclastogenic cytokines, it remains unclear whether osteoclasts (OCs) are also a target of intracellular infection. In this study, we examined the interaction between S. aureus and OCs, demonstrating internalization of GFP-labeled bacteria by confocal microscopy, both in vitro and in vivo. Utilizing an intracellular survival assay and flow cytometry during OC differentiation from bone marrow macrophages (BMMs), we found that the intracellular burden of S. aureus increases after initial infection in cells with at least 2 days of exposure to the osteoclastogenic cytokine receptor activator of nu...

Staphylococcus aureus internalization impairs osteoblastic activity and early differentiation process

Scientific Reports, 2021

Staphylococcus aureus is the most frequent aetiology of bone and joint infections (BJI) and can cause relapsing and chronic infections. One of the main factors involved in the chronicization of staphylococcal BJIs is the internalization of S. aureus into osteoblasts, the bone-forming cells. Previous studies have shown that S. aureus triggers an impairment of osteoblasts function that could contribute to bone loss. However, these studies focused mainly on the extracellular effects of S. aureus. Our study aimed at understanding the intracellular effects of S. aureus on the early osteoblast differentiation process. In our in vitro model of osteoblast lineage infection, we first observed that internalized S. aureus 8325-4 (a reference lab strain) significantly impacted RUNX2 and COL1A1 expression compared to its non-internalized counterpart 8325-4∆fnbAB (with deletion of fnbA and fnbB). Then, in a murine model of osteomyelitis, we reported no significant effect for S. aureus 8325-4 and ...

Dual Impact of Live Staphylococcus aureus on the Osteoclast Lineage, Leading to Increased Bone Resorption

J Infect Dis, 2014

Background. Bone and joint infection, mainly caused by Staphylococcus aureus, is associated with significant morbidity and mortality, characterized by severe inflammation and progressive bone destruction. Studies mostly focused on the interaction between S. aureus and osteoblasts, the bone matrix-forming cells, while interactions between S. aureus and osteoclasts, the only cells known to be able to degrade bone, have been poorly explored.

A Secreted Bacterial Protease Tailors the Staphylococcus aureus Virulence Repertoire to Modulate Bone Remodeling during Osteomyelitis

Cell Host & Microbe, 2013

Osteomyelitis is a common manifestation of invasive Staphylococcus aureus infection. Pathogen-induced bone destruction limits antimicrobial penetration to the infectious focus and compromises treatment of osteomyelitis. To investigate mechanisms of S. aureus-induced bone destruction, we developed a murine model of osteomyelitis. Microcomputed tomography of infected femurs revealed that S. aureus triggers profound alterations in bone turnover. The bacterial regulatory locus sae was found to be critical for osteomyelitis pathogenesis, as Sae-regulated factors promote pathologic bone remodeling and intraosseous bacterial survival. Exoproteome analyses revealed the Sae-regulated protease aureolysin as a major determinant of the S. aureus secretome and identified the phenolsoluble modulins as aureolysin-degraded, osteolytic peptides that trigger osteoblast cell death and bone destruction. These studies establish a murine model for pathogen-induced bone remodeling, define Sae as critical for osteomyelitis pathogenesis, and identify protease-dependent exoproteome remodeling as a major determinant of the staphylococcal virulence repertoire. Sae-Regulated Secreted Virulence Factors Are Cytotoxic to Osteoblasts In vivo studies revealed a critical role for the sae regulatory locus in the pathogenesis of S. aureus osteomyelitis. In order to Cell Host & Microbe S. aureus Exoproteins Modulate Bone Remodeling

Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis

Frontiers in Microbiology, 2021

Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxisand haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (pbp3, atl, and mreC) and surface adhesin mutants (clfA and sasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (µSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo.

Staphylococcus aureus Fibronectin Binding Proteins A and B Possess a Second Fibronectin Binding Region That May Have Biological Relevance to Bone Tissues

Calcified Tissue International, 2002

Staphylococcus aureus is a major pathogen of bone that has been shown to be internalized by osteoblasts via a receptor-mediated pathway. Here we report that there are strain-dependent differences in the uptake of S. aureus by osteoblasts. An S. aureus septic arthritis isolate, LS-1, was internalized some 10-fold more than the laboratory strain 8325-4. Disruption of the genes for the fibronectin binding proteins in these two strains of S. aureus blocked their ability to be internalized by osteoblasts, thereby demonstrating the essentiality of these genes in this process. However, there were no differences in the capacity of these two strains to bind to fibronectin or osteoblasts. Analysis of the kinetics of internalization of the two strains by osteoblasts revealed that strain 8325-4 was internalized only over a short period of time (2 h) and to low numbers, while LS-1 was taken up by osteoblasts in large numbers for over 3 h. These differences in the kinetics of uptake explain the fact that the two strains of S. aureus are internalized by osteoblasts to different extents and suggest that in addition to the fibronectin binding proteins there are other, as yet undetermined virulence factors that play a role in the internalization process.

Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis

Frontiers in Cellular and Infection Microbiology, 2015

Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the overproduction of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics.

Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro

BMC Musculoskeletal Disorders, 2013

Background: Osteomyelitis is a severe and often debilitating disease characterized by inflammatory destruction of bone. Despite treatment, chronic infection often develops which is associated with increased rates of treatment failure, delayed osseous-union, and extremity amputation. Within affected bone, bacteria exist as biofilms, however the impact of biofilms on osteoblasts during disease are unknown. Herein, we evaluated the effect of S. aureus biofilms on osteoblast viability, osteogenic potential, and the expression of the pro-osteoclast factor, receptor activator of NF-kB ligand (RANK-L). Methods: Osteoblasts were exposed to biofilm conditioned media (BCM) from clinical wound isolates of Staphylococcus aureus under normal growth and osteogenic conditions to assess cellular viability and osteoblast differentiation, respectively. Cell viability was evaluated using a live/dead assay and by quantifying total cellular DNA at days 0, 1, 3, 5, and 7. Apoptosis following treatment with BCM was measured by flow-cytometry using the annexin V-FITC/PI apoptosis kit. Osteogenic differentiation was assessed by measuring alkaline phosphatase activity and intracellular accumulation of calcium and osteocalcin for up to 21 days following exposure to BCM. Expression of genes involved in osteogenic differentiation and osteoclast regulation, were also evaluated by quantitative real-time PCR. Results: BCM from clinical strains of S. aureus reduced osteoblast viability which was accompanied by an increase in apoptosis. Osteogenic differentiation was significantly inhibited following treatment with BCM as indicated by decreased alkaline phosphatase activity, decreased intracellular accumulation of calcium and inorganic phosphate, as well as reduced expression of transcription factors and genes involved in bone mineralization in viable cells. Importantly, exposure of osteoblasts to BCM resulted in up-regulated expression of RANK-L and increase in the RANK-L/ OPG ratio compared to the untreated controls. Conclusions: Together these studies suggest that soluble factors produced by S. aureus biofilms may contribute to bone loss during chronic osteomyelitis simultaneously by: (1) reducing osteoblast viability and osteogenic potential thereby limiting new bone growth and (2) promoting bone resorption through increased expression of RANK-L by osteoblasts. To our knowledge these are the first studies to demonstrate the impact of staphylococcal biofilms on osteoblast function, and provide an enhanced understanding of the pathogenic role of staphylococcal biofilms during osteomyelitis.