Close inbreeding and low genetic diversity in Inner Asian human populations despite geographical exogamy (original) (raw)
Related papers
OBJECTIVE: The extent to which social organization of human societies impacts the patterns of genetic diversity remains an open question. Here, we investigate the transmission of reproductive success in patrilineal and cognatic populations from Central Asia using a coalescent approach. METHODS: We performed a study on the mitochondrial DNA (mtDNA) and Y chromosome polymorphism of patrilineal and cognatic populations from Central Asia. We reconstructed the gene genealogies in each population for both kind of markers and inferred the imbalance level of these genealogies, a parameter directly related to the level of transmission of reproductive success. RESULTS: This imbalance level appeared much stronger for the Y chromosome in patrilineal populations than in cognatic populations, while no difference was found for mtDNA. Furthermore, we showed that this imbalance level correlates negatively with Y-chromosomal, mtDNA, and autosomal genetic diversity. CONCLUSIONS: This shows that patrilineality might be one of the factors explaining the male transmission of reproductive success, which, in turn, lead to a reduction of genetic diversity. Thus, notwithstanding the fact that our population genetic approach clearly shows that there is a strong male-biased transmission of reproductive success in patrilineal societies, it also highlights the fact that a social process such as cultural transmission of reproductive success could play an important role in shaping human genetic diversity, although we cannot formally exclude that this transmission has also a genetic component. Am J Phys Anthropol :1-7, 2015. © 2015 Wiley Periodicals, Inc.
Human inbreeding has decreased in time through the Holocene
2020
SummaryThe history of human inbreeding is controversial. The development of sedentary agricultural societies may have had opposite influences on inbreeding levels. On the one hand, agriculture and food surplus may have diminished inbreeding by increasing population sizes and lowering endogamy, i.e. inbreeding due to population isolation. On the other hand, increased sedentism, as well as the advent of private property may have promoted inbreeding through the emergence of consanguineous marriage customs or via ethnic and caste endogamy. The net impact is unknown, and to date, no systematic study on the temporal frequency of inbreeding in human societies has been conducted. Here we present a new approach for reliable estimation of runs of homozygosity (ROH) in genomes with ≥3x mean coverage across >1 million SNPs, and apply this to 440 ancient Eurasian genomes from the last 15,000 years. We show that the frequency of inbreeding, as measured by ROH, has decreased over time. The stro...
Philosophical Transactions of the Royal Society B: Biological Sciences, 2019
In matrilineal populations, the descent group affiliation is transmitted by women whereas the socio-political power frequently remains in the hands of men. This situation, named the ‘matrilineal puzzle’, is expected to promote local endogamy as a coping mechanism allowing men to maintain their decision-making power over their natal descent group. In this paper, we revisit this ‘matrilineal puzzle’ from a population genetics' point of view. Indeed, such tendency for local endogamy in matrilineal populations is expected to increase their genetic inbreeding and generate isolation-by-distance patterns between villages. To test this hypothesis, we collected ethno-demographic data for 3261 couples and high-density genetic data for 675 individuals from 11 Southeast Asian populations with a wide range of social organizations: matrilineal and matrilocal populations (M), patrilineal and patrilocal populations (P) or cognatic populations with predominant matrilocal residence (C). We observ...
Consanguinity around the world: what do the genomic data of the HGDP-CEPH diversity panel tell us?
European Journal of Human Genetics, 2011
Inbreeding coefficients and consanguineous mating types are usually inferred from population surveys or pedigree studies. Here, we present a method to estimate them from dense genome-wide single-nucleotide polymorphism genotypes and apply it to 940 unrelated individuals from the Human Genome Diversity Panel (HGDP-CEPH). Inbreeding is observed in almost all populations of the panel, and the highest inbreeding levels and frequencies of inbred individuals are found in populations of the Middle East, Central South Asia and the Americas. In these regions, first cousin (1C) marriages are the most frequent, but we also observed marriages between double first cousins (2Â1C) and between avuncular (AV) pairs. Interestingly, if 2Â1C marriages are preferred to AV marriages in Central South Asia and the Middle East, the contrary is found in the Americas. There are thus some regional trends but there are also some important differences between populations within a region. Individual results can be found on the CEPH website at ftp://ftp.cephb.fr/hgdp\_hbd/.
The influence of admixture and consanguinity on population genetic diversity in Middle East
Journal of Human Genetics, 2014
The Middle East (ME) is an important crossroad where modern humans migrated 'out of Africa' and spread into Europe and Asia. After the initial peopling and long-term isolation leading to well-differentiated populations, the ME also had a crucial role in subsequent human migrations among Africa, Europe and Asia; thus, recent population admixture has been common in the ME. On the other hand, consanguinity, a well-known practice in the ME, often reduces genetic diversity and works in opposition to admixture. Here, we explored the degree to which admixture and consanguinity jointly affected genetic diversity in ME populations. Genome-wide single-nucleotide polymorphism data were generated in two representative ME populations (Arabian and Iranian), with comparisons made with populations worldwide. Our results revealed an overall higher genetic diversity in both ME populations relative to other non-African populations. We identified a much larger number of long runs of homozygosity in ME populations than in any other populations, which was most likely attributed to high levels of consanguineous marriages that significantly decreased both individual and population heterozygosity. Additionally, we were able to distinguish African, European and Asian ancestries in ME populations and quantify the impact of admixture and consanguinity with statistical approaches. Interestingly, genomic regions with significantly excessive ancestry from individual source populations are functionally enriched in olfactory pathways, which were suspected to be under natural selection. Our findings suggest that genetic admixture, consanguinity and natural selection have collectively shaped the genetic diversity of ME populations, which has important implications in both evolutionary studies and medical practices.
American journal of physical anthropology, 2018
Social organization plays a major role in shaping human population genetic diversity. In particular, matrilocal populations tend to exhibit less mitochondrial diversity than patrilocal populations, and the other way around for Y chromosome diversity. However, several studies have not replicated such findings. The objective of this study is to understand the reasons for such inconsistencies and further evaluate the influence of social organization on genetic diversity. We explored uniparental diversity patterns using mitochondrial HV1 sequences and 17 Y-linked short tandem repeats (STRs) in 12 populations (n = 619) from mainland South-East Asia exhibiting a wide range of social organizations, along with quantitative ethno-demographic information sampled at the individual level. MtDNA diversity was lower in matrilocal than in multilocal and patrilocal populations while Y chromosome diversity was similar among these social organizations. The reasons for such asymmetry at the genetic le...
Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations
American journal of physical anthropology, 2017
Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed t...
Molecular Ecology, 2004
Many recent studies report that individual heterozygosity at a handful of apparently neutral microsatellite markers is correlated with key components of fitness, with most studies invoking inbreeding depression as the likely underlying mechanism. The implicit assumption is that an individual's inbreeding coefficient can be estimated reliably using only 10 or so markers, but the validity of this assumption is unclear. Consequently, we have used individual-based simulations to examine the conditions under which heterozygosity and inbreeding are likely to be correlated. Our results indicate that the parameter space in which this occurs is surprisingly narrow, requiring that inbreeding events are both frequent and severe, for example, through selfing, strong population structure and/or high levels of polygyny. Even then, the correlations are strong only when large numbers of loci (~200) can be deployed to estimate heterozygosity. With the handful of markers used in most studies, correlations only become likely under the most extreme scenario we looked at, namely 20 demes of 20 individuals coupled with strong polygyny. This finding is supported by the observation that heterozygosity is only weakly correlated among markers within an individual, even in a dataset comprising 400 markers typed in diverse human populations, some of which favour consanguineous marriages. If heterozygosity and inbreeding coefficient are generally uncorrelated, then heterozygosity–fitness correlations probably have little to do with inbreeding depression. Instead, one would need to invoke chance linkage between the markers used and one or more gene(s) experiencing balancing selection. Unfortunately, both explanations sit somewhat uncomfortably with current understanding. If inbreeding is the dominant mechanism, then our simulations indicate that consanguineous mating would have to be vastly more common than is predicted for most realistic populations. Conversely, if heterosis provides the answer, there need to be many more polymorphisms with major fitness effects and higher levels of linkage disequilibrium than are generally assumed.
Molecular biology and evolution, 2015
Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of...