Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser (original) (raw)

The passive mode-locking of an erbium-doped fiber laser (EDFL) with a medium gain is demonstrated and compared by using three different types of carbon nanotubes (CNTs) doped in polyvinyl alcohol (PVA) films. Nano-scale clay is used to disperse the CNTs doped in the PVA polymer aqueous solution to serve as a fast saturable absorber to initiate passive mode-locking. The three types of CNT based saturable absorbers, namely single-walled (SW), double-walled (DW) and multi-walled (MW), are characterized by Raman scattering and optical absorption spectroscopy. The SW-CNTs with a diameter of 1.26 nm have two absorption peaks located around 1550 ± 70 and 860 ± 50 nm. In contrast, the DW-CNTs with a diameter of 1.33 nm reveal two absorption peaks located at 1580 ± 40 and 920 ± 50 nm. By using the SW-CNT based saturable absorber, the passively mode-locked EDFL exhibits a pulsewidth of 1.28 ps and a spectral linewidth of 1.99 nm. Due to the increased linear absorption of the DW-CNT based saturable absorber, the intra-cavity net gain of the EDFL is significantly attenuated to deliver an incompletely mode-locked pulsewidth of 6.8 ps and a spectral linewidth of 0.62 nm. No distinct pulse-train is produced by using the MW-CNT film as the saturable absorber, which is attributed to the significant insertion loss of the EDFL induced by the large linear absorption of the MW-CNT film.