Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies (original) (raw)

Responses of deciduous forest trees to severe drought in Central Europe

Tree Physiology, 2005

In 2003, Central Europe experienced the warmest summer on record combined with unusually low precipitation. We studied plant water relations and phenology in a 100-yearold mixed deciduous forest on a slope (no ground water table) near Basel using the Swiss Canopy Crane (SCC). The drought lasted from early June to mid September. We studied five deciduous tree species; half of the individuals were exposed to elevated CO 2 concentration ([CO 2 ]) (530 ppm) using a free-air, atmospheric CO 2 -enrichment system. In late July, after the first eight weeks of drought, mean predawn leaf water potential about 30 m above ground was -0.9 MPa across all trees, dropping to a mean of -1.5 MPa in mid-August when the top 1 m of the soil profile had no plant accessible moisture. Mean stomatal conductance and rates of maximum net photosynthesis decreased considerably in mid-August across all species. However, daily peak values of sap flow remained surprisingly constant over the whole period in Quercus petraea (Matt.) Liebl., and decreased to only about half of the early summer maxima in Fagus sylvatica L. and Carpinus betulus L. (stomatal downregulation of flux). Although we detected no differences in most parameters between CO 2 -treated and control trees, predawn leaf water potential tended to be less negative in trees exposed to elevated [CO 2 ]. Leaf longevity was greater in 2003 compared with the previous years, but the seasonal increase in stem basal area reached only about 75% of that in previous years. Our data suggest that the investigated tree species, particularly Q. petraea, did not experience severe water stress. However, an increased frequency of such exceptionally dry summers may have a more serious impact than a single event and would give Q. petraea a competitive advantage in the long run.

Responses of Contrasting Tree Functional Types to Air Warming and Drought

Climate change-induced rise of air temperatures and the increase of extreme climatic events, such as droughts, will largely affect plant growth and hydraulics, leading to mortality events all over the globe. In this study, we investigated the growth and hydraulic responses of seedlings of contrasting functional types. Pinus sylvestris, Quercus spp. and Castanea sativa seedlings were grown in a common garden experiment under four treatments: control, air warming, drought and their combination during two consecutive growing periods. Height and diameter increments, stomatal conductance and stem water potentials were measured during both growing seasons. Additionally, hydraulic parameters such as xylem-specific native and maximum hydraulic conductivities, and native percentage of loss of conductivity were measured at the end of the entire experiment. Our results clearly pointed to different adaptive strategies of the studied species. Scots pine displayed a relatively isohydric behavior with a strict stomata control prohibiting native embolism whereas sweet chestnut and oak as relatively anisohydric species displayed an increased loss of native conductivity as a results of low water potentials. Seasonal timing of shoot and diameter growth also differed among functional types influencing drought impacts. Additionally, the possibility of embolism reversal seemed to be limited under the study conditions.

Drought acclimation of two deciduous tree species of different layers in a temperate forest canopy

Trees - Structure and Function, 2004

Water-use strategies of Populus tremula and Tilia cordata, and the role of abscisic acid in these strategies, were analysed. P. tremula dominated in the overstorey and T. cordata in the lower layer of the tree canopy of the temperate deciduous forest canopy. Shoot water potential (Y), bulk-leaf abscisic acid concentration ([ABA] leaf ), abscisic acid concentration in xylem sap ([ABA] xyl ), and rate of stomatal closure following the supply of exogenous ABA (v) decreased acropetally through the whole tree canopy, and foliar water content per area (w), concentration of the leaf osmoticum (c), maximum leaf-specific hydraulic conductance of shoot (L), stomatal conductance (g s ), and the threshold dose per leaf area of the exogenous ABA (d a ) required to reduce stomatal conductance increased acropetally through the tree canopy (from the base of the foliage of T. cordata to the top of the foliage of P. tremula) in non-stressed trees. The threshold dose per leaf dry mass of the exogenous ABA (d w ) required to reduce stomatal conductance, was similar through the tree canopy. After a drought period (3 weeks), the Y, w, L, g s , d a and d w had decreased, and c and v had increased in both species. Yet, the effect of the drought period was more pronounced on L, g s , d a , d w and v in T. cordata, and on Y, w and c in P. tremula. It was concluded that the water use of the species of the lower canopy layer-T. cordata, is more conservative than that of the species of the overstorey, P. tremula.

Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences

Annals of Forest Science, 2006

The extreme drought event that occurred in Western Europe during 2003 highlighted the need to understand the key processes that may allow trees and stands to overcome such severe water shortages. We therefore reviewed the current knowledge available about such processes. First, impact of drought on exchanges at soil-root and canopy-atmosphere interfaces are presented and illustrated with examples from water and CO 2 flux measurements. The decline in transpiration and water uptake and in net carbon assimilation due to stomatal closure has been quantified and modelled. The resulting models were used to compute water balance at stand level basing on the 2003 climate in nine European forest sites from the CARBOEUROPE network. Estimates of soil water deficit were produced and provided a quantitative index of soil water shortage and therefore of the intensity of drought stress experienced by trees during summer 2003. In a second section, we review the irreversible damage that could be imposed on water transfer within trees and particularly within xylem. A special attention was paid to the inter-specific variability of these properties among a wide range of tree species. The inter-specific diversity of hydraulic and stomatal responses to soil water deficit is also discussed as it might reflect a large diversity in traits potentially related to drought tolerance. Finally, tree decline and mortality due to recurrent or extreme drought events are discussed on the basis of a literature review and recent decline studies. The potential involvement of hydraulic dysfunctions or of deficits in carbon storage as causes for the observed long term (several years) decline of tree growth and development and for the onset of tree dieback is discussed. As an example, the starch content in stem tissues recorded at the end of the 2003's summer was used to predict crown conditions of oak trees during the following spring: low starch contents were correlated with large twig and branch decline in the crown of trees.

Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought

International Journal of Biometeorology, 2018

The role of trees in city cooling has warranted much attention based on concerns over climate change and urban expansion. Simultaneously, there is an interest in introducing species from dry habitats to cope with the increasing risks of drought under climate change. The general understanding is that the evolutionary adaptation to respective resource supplies in species' habitats affects their environmental tolerance. The physical performances of six frequently planted species, originating from two contrasting habitats, were tested in a drought experiment. We (1) investigated if species from drier habitats are more drought tolerant than species that have evolved in Central European woodlands under a temperate climate regime and (2) discussed the effect of tolerance on the cooling potential of these trees. Native species from mesic habitats maintained only 48% of their controls sap flux and of these species, Tilia cordata had the worst performance with premature leaf senescence. Species from drier habitats had less reduction in sap flux (60%) but lower stem growth, possibly favouring (fine) root development into deeper soil layers, as observed when comparing linden species. Higher stem water exploitation and stronger regulation of water use at high evaporative demand were further reaction patterns that likely helped species from dry habitats maintain good physiological functions. Therefore, even under sustained drought, we expect them to have a higher cooling capacity. As a conclusion, they should be favoured for planting in extreme urban environments. Systematic screening and testing of promising species from target habitats is recommended to diversify the choice of species.

Summer droughts limit tree growth across 10 temperate species on a productive forest site

Forest Ecology and Management, 2013

Studies on climate impacts on tree annual growth are mainly restricted to marginal sites. To date, the climate effects on annual growth of trees in favorable environments remain therefore unclear despite the importance of these sites in terms of forest productivity. Because species respond differently to climate, comparing a multitude of species further enhances our knowledge on climate impacts on tree growth and forest productivity.

Physiological Responses of Forest Trees to Heat and Drought

Plant Biology, 2006

The heat wave of summer 2003 was the largest and the most persistent ever experienced in Central Europe and has fuelled concern about the effects of climate change on European ecosystems. Since forests constitute the most important European ecosystems, in this review article we assess current knowledge on the effects of heat and drought on key metabolic processes for growth and productivity of forest trees. In particular, the general consequences of heat and drought on (1) photosynthesis and respiration at the cellular and community level, and (2) on nutrient uptake, partitioning and competition for nutrients are summarized. The latter are a major sink for photosynthetic energy and, therefore, are indirectly but strongly connected to the performance of photosynthesis. In addition, the interaction of heat and drought with stress compensation mechanisms and emission of biogenic volatile organic compounds (BVOC) are discussed, since these processes are directly connected to carbon metabolism. Effects on the emission of BVOC are also included because they constitute an important feedback mechanism on ozone formation and, thus, on atmospheric pollution. As far as available, data collected during the 2003 heat wave are included and discussed.

Influence of species interactions on transpiration of Mediterranean tree species during a summer drought

Recent research has shown that interactions between species with different functional traits can promote forest ecosystem processes. In the context of climate change, understanding whether species interactions in mixed-species ecosystems can improve the adaptation of these ecosystems to extreme climatic events is crucial to developing new management strategies. In this study, we investigated the impact of species interactions on the sap flux density of three Mediterranean tree species (Quercus faginea, Pinus nigra and Pinus sylvestris) during a summer drought. Measurements of foliar carbon isotopic composition (d 13 C) were also conducted on the same trees. The decline in transpiration during drought was the greatest for P. sylvestris and the least pronounced for Q. faginea. For P. nigra and Q. faginea, the decrease in transpiration as the drought progressed was lower when these species where interacting with another tree species, particularly with P. sylvestris. In contrast, the decrease for P. sylvestris was higher when this species was interacting with another species. Differing drought effects were consistent with the d 13 C values. We showed that the identity of the species present in the direct neighbourhood of a given tree can differentially influence water availability and wateruse of these three co-existing Mediterranean tree species during a summer drought. Our findings suggest that species interactions play an important role in modulating the response of tree species to drought. Favouring tree species diversity in this region does not seem to be systematically beneficial in terms of soil water availability and water-use for all the interacting species.

Diverging drought-tolerance strategies explain tree species distribution along a fog-dependent moisture gradient in a temperate rain forest

The study of functional traits and physiological mechanisms determining species’ drought tolerance is important for the prediction of their responses to climatic change. Fog-dependent forest patches in semiarid regions are a good study system with which to gain an understanding of species’ responses to increasing aridity and patch fragmentation. Here we measured leaf and hydraulic traits for three dominant species with contrasting distributions within patches in relict, fog-dependent forests in semiarid Chile. In addition, we assessed pressure volume curve parameters in trees growing at a dry leeward edge and wet patch core. We predicted species would display contrasting suites of traits according to local water availability: from one end favoring water conservation and reducing cavitation risk, and from the opposite end favoring photosynthetic and hydraulic efficiency. Consistent with our hypothesis, we identified a continuum of water use strategies explaining species distribution along a small scale moisture gradient. Drimys winteri, a tree restricted to the humid core, showed traits allowing efficient water transport and high carbon gain; in contrast, Myrceugenia correifolia, a tree that occurs in the drier patch edges, exhibited traits promoting water conservation and lower gas exchange rates, as well low water potential at turgor loss point. The most widespread species, Aextoxicon punctatum, showed intermediate trait values. Osmotic compensatory mechanism was detected in M. correifolia, but not in A. punctatum. We show that partitioning of the pronounced soil moisture gradients from patch cores to leeward edges among tree species is driven by differential drought tolerance. Such differences indicate that trees have contrasting abilities to cope with future reductions in soil moisture.

Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability

Global Change Biology, 2014

The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter-and intra-site variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations.