Subsurface plumbing and fluid expulsion from sedimentary basins: evidence from the sedimentary record offshore West Africa (Invited) (original) (raw)

2010

Abstract

ABSTRACT Many petroliferous basins around the world show evidence for fluid expulsion and seepage on the land surface or seafloor. However, not all fluid expulsion features are evidence of a working hydrocarbon systems and one needs to carefully evaluate fluid expulsion features and their associated geology and in particular their plumbing systems before inferring the nature of the expelled fluids. Geochemical fingerprinting of the migrating fluids may be sampled directly or via carbonate cements secreted in association with focus fluid conduits and may help determine the nature of the expelled fluids including their stratigraphic origin. When such evidence is unavailable, one may have to rely on remote sensing, including 3D seismic characterization in order to assess the nature of expelled fluids and links with hydrocarbon migration and/or `normal' diagenetic fluid expulsion. This paper presents 3D seismic case studies of pockmarks, fluid flow pipes and polygonal fault systems which show evidence of both deep and shallow sources of expelled fluids and discuss the different controls on their occurrence and significance. Importantly, there is evidence of both conducting and sealing behaviours of polygonal fault sytems. Bottom-Simulating Reflections from interfaces between free gas and overlying gas hydrate occur in a variety of manifestations and may be linked with both deep and shallow sources of methane. Their depth of occurrence relative to seafloor depth may be used to infer local geothermal gradients and it is shown that underlying salt causes BSRs to shallow, indicative of a doubling of the geothermal gradient above salt structures compared to the adjacent salt mini basins. It is further suggested that salt structures on the middle slope serve a dual purpose as trap and leak-forming features, with traps focused on the down-dip side of overhanging diapirs and leaks located on the updip side and flanks. Associated leakage phenomena include gas and gas hydrate accumulaions, pockmarks, pipes, and occasionally mud volcanoes, depending on the structural configuration (relief, dip, continuity, etc) of aquifers and aquitards.

Mads Huuse hasn't uploaded this paper.

Let Mads know you want this paper to be uploaded.

Ask for this paper to be uploaded.