Influence of polymyxins on the structural dynamics of Escherichia coli lipid membranes (original) (raw)

Interaction of polymyxin B and A deacilated derivative with monolayers of bacterial lipids

Le Journal de Physique IV, 2001

Polymyxin B (PxB) is a polycationic peptide antibiotic produced by gram-positive bacteria Bacillus polymyxia, and is highly selective against gram-negative organisms. In the present work we have studied the interaction of PxB and PxB-nonapeptide (NF'), with lipid monolayers of a lipidic extract from Escherichia coli, a bacteria susceptible to PxB. Kinetics of insertion of both peptides at different surface pressures are compared. Also, the effect of peptides on the phase behaviour of the monolayers is determined from the compression isotherms.

Polymyxin B-lipid interactions in Langmuir-Blodgett monolayers ofEscherichia coli lipids: A thermodynamic and atomic force microscopy study

Biopolymers, 2004

The dramatically increased frequency of antibiotic resistance has led to intensive efforts towards developing new families of antibiotics. Membrane-active antibiotic peptides such as polymyxin B (PxB) hold promise as the next generation of antibiotics, since they rarely spur the evolution of resistance. At low concentrations in the membrane, PxB forms vesicle-vesicle contacts and induces lipid exchange without leakage or fusion, a phenomenon that can explain its specificity towards Gramnegative bacteria by contact formation between the two phospholipids interfaces in the periplasmatic space. In this work, the interaction of PxB and the nonantibiotic derivative polymyxin B nonapeptide (PxB-NP) with monolayers of Escherichia coli membrane lipids (ECL) has been studied by thermodynamic and structural methods. PxB inserts itself into ECL monolayers as a conformation that forms intermembrane contacts with vesicles injected underneath, and induces lipid exchange when the monolayer surface pressure is set at 32 mN/m (membrane equivalence pressure) or net transfer vesicle-to-monolayer at lower surface pressures. Thermodynamic analysis of the compression isotherms of mixed monolayers indicates that PxB inserts into the monolayer with an expansion of the mean molecular area, implying that peptide and lipids form nonideal mixtures. At low concentrations, corresponding to the membrane-membrane contact form of PxB, the mixed monolayers present positive excess energy values (⌬G m Ex), and atomic force microscopy (AFM) imaging reveals structures of ϳ120-nm diameter that protrude from the lipid surface ϳ0.7 nm. At concentrations of PxB above 4 mol %, thermodynamic analysis gives a very high ⌬G m Ex , corresponding to nonfavorable interactions, and AFM images show round structures of 20-30nm diameter. PxB-NP behaves in a totally different way, in agreement with its inability to form vesicle-vesicle contacts and its lack of antibiotic effect. These results are discussed in the light of the mechanism of action of PxB on the membrane of Gram-negative bacteria.

Secondary structure and lipid contact of a peptide antibiotic in phospholipid bilayers by REDOR

Biophysical journal, 2004

The chemical shifts of specific (13)C and (15)N labels distributed throughout KIAGKIA-KIAGKIA-KIAGKIA (K3), an amphiphilic 21-residue antimicrobial peptide, prove that the peptide is in an all alpha-helical conformation in the bilayers of multilamellar vesicles (MLVs) containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol (1:1). Rotational-echo double-resonance (REDOR) (13)C[(31)P] and (15)N[(31)P] experiments on the same labeled MLVs show that on partitioning into the bilayer, the peptide chains remain in contact with lipid headgroups. The amphipathic lysine side chains of K3 in particular appear to play a key role in the electrostatic interactions with the acidic lipid headgroups. In addition to the extensive peptide-headgroup contact, (13)C[(19)F] REDOR experiments on MLVs containing specifically (19)F-labeled lipid tails suggest that a portion of the peptide is surrounded by a large number of lipid acyl chains. Complementary (31)P[(19)F] REDOR experiments ...

Antibiotic interaction with phospholipid monolayers

Materials Science and Engineering: C, 2002

We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir -Blodgett technique.

Interaction of the polyene antibiotics with lipid bilayer vesicles containing cholesterol

Biochimica et Biophysica Acta (BBA) - Biomembranes, 1976

The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action.

NMR study of the interactions of polymyxin B, gramicidin S, and valinomycin with dimyristoyllecithin bilayers

Biochemistry, 1988

The interactions of three polypeptide antibiotics (polymyxin B, gramicidin S, and valinomycin) with artificial lecithin membranes were studied by nuclear magnetic resonance (NMR). Combination of 31P and 2H NMR allowed observation of perturbations of the bilayer membrane structure induced by each of the antibiotics in the regions of the polar headgroups and acyl side chains of the phospholipids. The comparative study of the effects of these membrane-active antibiotics and the lipid bilayer structure demonstrated distinct types of antibiotic-membrane interactions in each case. Thus, the results showed the absence of interaction of polymyxin B with the dimyristoyllecithin membranes. In contrast, gramicidin S exhibited strong interaction with the lipid above the gel to liquid-crystalline phase transition temperature: disordering of the acyl side chains was evident. Increasing the concentration of gramicidin S led to disintegration of the bilayer membrane structure. At a molar ratio of 1:16 of gramicidin S to lecithin, the results are consistent with coexistence of gel and liquid-crystalline phases of the phospholipids near the phase transition temperature. Valinomycin decreased the phase transition temperature of the lipids and increased the order parameters of the lipid side chains. Such behavior is consistent with penetration of the valinomycin molecule into the interior of the lipid bilayers.

Interaction of polymyxin B nonapeptide with anionic phospholipids

Biochemistry, 1987

The interaction of polymyxin B nonapeptide (PMBN) and polymyxin B (PMB) with the anionic phospholipids phosphatidylserine (PS), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidic acid (DPPA), and 1 : 1 mixtures (w/w) of DPPA and distearoylphosphatidylcholine (DSPC) was studied by calorimetry, electron spin resonance, and fluorescence spectrometry, electron microscopy, and fusion and leakage assays. The phase transition temperatures of DPPA and DPPG were very similar when bound to PMB or PMBN, indicating that the lipids are in a similar state when bound to the cationic peptides. Both PMB and PMBN caused the interdigitation of DPPG bilayers, suggesting that the penetration of hydrophobic side chains from a peptide bound electrostatically on the surface is sufficient to induce this phenomenon. Stopped-flow experiments revealed that PMBN and PMB induced the fusion of small unilamellar PS and large unilamellar DPPA-DSPC vesicles. The aggregation of vesicles was found to be a diffusion-controlled process; the subsequent fusion took place with a frequency of 102-(5 X lo2) s-l for small vesicles and 1-100 s-l for large vesicles. The freeze-fracture replicas of the PMB-treated vesicles displayed 12-50-nm depressions on several superimposed bilayers, indicating the formation of stable lipid-PMB domains. Since the incubation with PMBN produced similar depressions only if the specimens were fixed, PMBNinduced domain formation seems to be a reversible rapid process. The differences in the phospholipid-peptide interactions are correlated with the differences in the physiological action of the antibiotic PMB and the nonbactericidal PMBN on the cell envelope of Gram-negative bacteria.

Interaction of the polyene antibiotic etruscomycin with large unilamellar lipid vesicles: binding and proton permeability inducement

Biochimica et Biophysica Acta (BBA) - Biomembranes, 1985

The effect of the polyene antibiotic etruscomycin on the permeability of large unilamellar lipid vesicles was investigated. Proton leakage was induced in egg-yolk phosphatidylcholine (EPC) vesicles only when sterol was present in the membrane; the extent of leakage was limited. High etruscomycin/lipid ratios (R) were necessary (R > 0.I). Higher percentages of sterol increased the permeability, slightly more strongly for ergosterol than for cholesterol. Dipalmitoylphosphatidylcholine (DPPC) vesicles were more sensitive to permeability inducement, even in the absence of sterol in the bilayer (inducement for R > 0.06). The interactions of etruscomycin with the vesicles were examined by circular dichroism, fluorescence and 31P-NMR. In the range of antibiotic concentration where permeability was induced, R > 0.I for EPC vesicles, R > 0.06 for DPPC vesicles, etruscomycin exhibited characteristic circular dichroism spectra independent of the presence of sterol. Under the same conditions, 3t P-NMR and fluorescence studies indicated a destruction or a fusion of the vesicle bilayer. At lower etruscomycin concentrations (R < 0.03), the etruscomycin circular dichroism spectra were different, indicating that the interaction with membranes containing ergosterol differed from that with membranes containing cholesterol. From correlating the increase in fluorescence intensity with this interaction, as well as from exchange experiments, it was inferred that etruscomycin at a low antibiotic/lipid ratio is more strongly bound to ergosterol-containing vesicles than to cholesterol-containing vesicles. These results and their comparison with the results obtained with other polyene ~ntibiotics indicate that at low R etruscomycin resembles amphotericin rather than fUipin in its preferential binding to ergosterol-containing vesicles. At higher R, that is in conditions where permeability is induced, the selectivity is different. The corresponding mechanism seems not to involve the formation of an etruscomycin-sterol channel, since the hydrophobic chain of the complex would be too short to form a channel.

Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization

Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009

Antibiotics acting on bacterial membranes are receiving increasing attention because of widespread resistance to agents acting on other targets and of potentially improved bactericidal effects. Oritavancin is a amphiphilic derivative of vancomycin showing fast and extensive killing activities against multi-resistant (including vancomycin insusceptible) Gram-positive organisms with no marked toxicity towards eukaryotic cells. We have undertaken to characterize the interactions of oritavancin with phospholipid bilayers, using liposomes (LUV) and supported bilayers made of cardiolipin (CL) or phosphatidylglycerol (POPG) and phosphatidylethanolamine (POPE), all abundant in Gram-positive organisms. Changes in membrane permeability were followed by the release of calcein entrapped in liposomes at self-quenching concentrations, and changes in nanoscale lipid organization examined by Atomic Force Microscopy (AFM). Oritavancin caused a fast (b 5 min) and complete (N 95%) release of calcein from CL:POPE liposomes, and a slower but still substantial (50% in 60 min) release from POPG:POPE liposomes, which was (i) concentrationdependent (0-600 nM; [microbiologically meaningful concentrations]); (ii) enhanced by an increase in POPG:POPE ratio, and decreased when replacing POPG by DPPG. AFM of CL:POPE supported bilayers showed that oritavancin (84 nM) caused a remodeling of the lipid domains combined with a redisposition of the drug and degradation of the borders. In all the above studies, vancomycin was without a significant effect at 5.5 μM. Electrostatic interactions, together with lipid curvature, lipid polymorphism as well of fluidity play a critical role for the permeabilization of lipid bilayer and changes in lipid organization induced by oritavancin.

Selective binding of polymyxin B to negatively charged lipid monolayers

Biochimica et Biophysica Acta (BBA) - Biomembranes, 1977

It is demonstrated by direct measurement of surface radioactivity that the cationic polypeptide antibiotic polymyxin B is specifically adsorbed to negatively charged lipid monolayers. The latter attracted the following amounts of the biologically active mono-N-[14C]acetylpolymyxin B derivative (PX): lipid A from Proteus mirabilis, 0.17; phosphatidic acid, 0.12; phosphatidylglycerol and phosphatidylserine, 0.11; dicetylphosphate, 0.107; sulfoquinovosyldiglyceride, 0.104; phosphatidylinositol and cardiolipin, 0.095; and phosphatidylethanolamine, 0.017 pg/cm 2. Adsorption of PX to phosphatidylcholine, monogalactosyldiglyceride and stearylamine was almost or completely zero. Total lipids from Escherichia coli adsorbed 0.057 in comparison to 0.051 pg PX/cm 2 of an artificial mixture of phosphatidylethanolamine/phosphatidylglycerol/cardiolipin in the proportions 75 : 25 : 5. The concentration of the surface active PX at the air/water interphase was 0.091 tlg/cm z. These saturation surface concentrations of PX at lipid monolayers were reached at 1 pg/ml bulk concentrations in 2 mM NaC1/1 mM Tris • HC1, pH 7.2. They decreased with decreasing surface charge density of the adsorbing monolayer. In an experiment with cardiolipin/phosphatidylethanolamine mixtures it was shown that two molecules of cardiolipin induced adsorption of one molecule PX giving a 1 : 1 ratio with regard to positive and negative charges. This could be due to a similar charge density of about one charge per 40--50 A 2 in PX and lipid bilayers composed of phospholipids. The electrostatic PX-lipid interaction was severely inhibited by 10 .2 and 10 -~ M Ca 2÷ and Na ÷, respectively. It is discussed that the specificity of PX against Gram-negative bacteria is caused by the occurrence of lipid A, phosphatidylglycerol and cardiolipin at the cell surface of these microorganisms.