Analysis of Pole-Ascending–Descending Action by Insects Subjected to High Voltage Electric Fields (original) (raw)

Insects are electrified in an electric field by deprivation of their negative charge

Annals of Applied Biology, 2012

An electric field screen (EF-screen) is a physical device for excluding pest insects from greenhouses and warehouses to protect crops during their production and storage periods. In this study, a simple version of the EF-screen, an insulated conductor iron wire (ICW) paralleled to an earthed net, was constructed to effectively observe the attraction of test insects in relation to their electricity release. The ICW was negatively charged to dielectrically polarise the insulator sleeve of the ICW: negatively on the outer surface and positively on the inner conductor wire surface of the sleeve. The negative surface charge of the ICW caused an electrostatic induction in the earthed net and a resultant positive charge at the ICW-side surface of the net. An electric field formed between the ICW (negative pole) and earthed net (positive pole). Insects were attracted to the ICW when they were placed onto the earthed net. A vital step for the attraction was the creation of a transient bioelectric discharge from an insect. During this discharge, an electric charge of the insect was transferred to the earthed net. Eventually, the insect became net positive and was then attracted to the ICW. The magnitude of the current increased in direct proportion to the increase in voltage applied to the ICW, and the attraction force was directly proportional to the increase in the electric current. Larger voltages were necessary to attract much larger insects because larger insects were stronger and therefore more able to escape from the ICW attraction. Similar results were obtained for a wide range of pest insects belonging to different taxonomic groups (8 orders and 15 families). This study demonstrated that transient bioelectric discharge is common in insects and can be utilised to create an electrostatic force capable of moving insects in a generated electric field.

Turkestan Cockroaches Avoid Entering a Static Electric Field upon Perceiving an Attractive Force Applied to Antennae Inserted into the Field

Insects, 2021

This study analysed the mechanism of avoidance behaviour by adult Turkestan cockroaches (Shelfordella lateralis Walker) in response to a static electric field (S-EF) formed in the space between a negatively charged polyvinyl chloride-insulated iron plate (N-PIP) and a grounded metal net (G-MN). The negative surface charge supplied to the iron plate by a voltage generator caused the G-MN to polarise positively via electrostatic induction. In the S-EF, the negative charge of the N-PIP created a repulsive force that pushed free electrons in the field toward the ground via the G-MN. When insects released in the space surrounded by the S-EF inserted their antennae into the S-EF, they pulled them back reflexively and moved backward. The analysis indicated that an electric current flowed transiently toward the ground when an insect inserted its antennae into the S-EF. The insect became positively charged via this discharge and was attracted to the opposite pole (N-PIP). In response to this...

Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy

Journal of Physics: Conference Series, 2015

An electric field screen is a physical device used to exclude pest insects from greenhouses and warehouses to protect crop production and storage. The screen consists of iron insulated conductor wires (ICWs) arrayed in parallel and linked to each other, an electrostatic DC voltage generator used to supply a negative charge to the ICWs, and an earthed stainless net placed on one side of the ICW layer. The ICW was negatively charged to polarize the earthed net to create a positive charge on the ICW side surface, and an electric field formed between the opposite charges of the ICW and earthed net. Th e current study focused on the ability of the screen to repel insects reaching the screen net. This repulsion was a result of the insect's behaviour, i.e., the insects were deterred from entering the electric field of the screen. In fact, when the screen was negatively charged with the appropriate voltages, the insects placed their antennae inside the screen and then flew away without entering. Obviously, the insects recognized the electric field using their antennae and thereby avoided entering. Using a wide range of insects and spiders belonging to different taxonomic groups, we confirmed that the avoidance response to the electric field was common in these animals.

Static electric field detection and behavioural avoidance in cockroaches

Journal of Experimental Biology, 2008

Electric fields are pervasively present in the environment and occur both as a result of man-made activities and through natural occurrence. We have analysed the behaviour of cockroaches to static electric fields and determined the physiological mechanisms that underlie their behavioural responses. The behaviour of animals in response to electric fields was tested using a Y-choice chamber with an electric field generated in one arm of the chamber. Locomotory behaviour and avoidance were affected by the magnitude of the electric fields with up to 85% of individuals avoiding the charged arm when the static electric field at the entrance to the arm was above 8-10 kV m -1 . Electric fields were found to cause a deflection of the antennae but when the antennae were surgically ablated, the ability of cockroaches to avoid electric fields was abolished. Fixation of various joints of the antennae indicated that hair plate sensory receptors at the base of the scape were primarily responsible for the detection of electric fields, and when antennal movements about the head-scape joint were prevented cockroaches failed to avoid electric fields. To overcome the technical problem of not being able to carry out electrophysiological analysis in the presence of electric fields, we developed a procedure using magnetic fields combined with the application of iron particles to the antennae to deflect the antennae and analyse the role of thoracic interneurones in signalling this deflection. The avoidance of electric fields in the context of high voltage power lines is discussed.

Static electric fields modify the locomotory behaviour of cockroaches

Journal of Experimental Biology, 2011

Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

Electrohydrodynamic effects on two species of insects with economic importance to stored food products

International Journal of Biometeorology, 1996

An electrohydrodynamic (EHD) system which generated air ions within a strong electric field was used to study responses of stored-product insects Tribolium confusum (du Val) and Plodia interpunctella (Hfibner). Larval mortality of both species generally increased with increased exposure time to ions of either polarity. The larvae and pupae of T. confusum suffered a higher mortality rate than the adults. The insects initially exhibited distinct avoiding motions away from regions of high towards low fluxes of air ions of both polarity. Insects moved vigorously, tumbled, flipped, curled up, and aggregated when the EHD system was turned on. The control insects not exposed to air ions survived and showed a total absence of such behaviour. For bipolar exposures, the insects occupied the neutral zone where the effects were minimal due to cancellation of the fields. Prolonged exposures of more than 20 rain produced a quiescent state. EHD-enhanced mass transfer of the liquid component from physical objects established in fluid mechanics was invoked as a possible cause for insect mortality and avoiding behaviour to ions. Body fluid losses increased linearly with time of exposure (R2>0.97) for all biological stages of insect growth. The larvae and pupae of T. confusum lost 12 and 15% of their body fluids, respectively, after 80 rain of exposure to negative air ions. Fluid losses of such a magnitude are likely to have contributed to insect fatality.

Electrostatic measurement of dischargeable electricity and bioelectric potentials produced by muscular movements in flies

Journal of Electrostatics, 2014

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights

Electrical impedance’s effects of flying insects on selectivity of electrical insecticides

International Journal of Electrical and Computer Engineering (IJECE), 2022

The history of controlling destructive insects in the twentieth century makes it clear that the difficulties we encounter today in dealing with these types of insects come from our almost total reliance on one single controlling method, namely the use of chemical insecticides. These toxic and suspected carcinogenic products pose a serious threat to agriculture and the environment. However, the possibility of directing researchers in developing a new way considered as more efficient, more selective and less toxic has proved to be possible. The principle of this approach is based on an attractive effect and an electric effect. Nevertheless, the development of a bio and selective electrical system requires taking into account certain parameters involved in the attraction of insects and electrical discharge such as the electrical impedance. The results showed that the threshold at which the insect is disturbed depends on its conductivity.

Study and realization of an electric process to fight against harmful insects

A device for catching insects, using a high voltage electrical discharge, called KAHRATRAP, is designed and build up by the first author of this paper. The aim of this paper is to describe the electrical operation mode of this apparatus such as the high voltage supply and the electrical discharge which this supply produces for the elimination of insects. Moreover, we analyze the influence of climatic parameters such as temperature, humidity and speed of wind on the efficiency of the apparatus. This experimental device was used during 4 months in a vegetable field, operating during the night from 18h to 6h to capture harmful insects. The reading of insect numbers is done according to a procedure using a binocular magnifying glass, an entomologist tool and boxes for the collection of insects.

Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces

Journal of Electrostatics, 2002

Houseflies (Musca domestica L.) have been found to accumulate significant electrostatic charges when walking on uncharged dielectric surfaces. The number of steps taken was found to determine the amount of charge transferred whereas time, on its own, did not play a significant role. After walking only a short distance, typically 30 cm, flies reached saturation charge. The level of this varied according to the position of the surface in the triboelectric series relative to the fly. The rate of charging (pC/footstep) was directly proportional to the difference between the fly's charge and its saturation charge, hence the initial rate of charging for an uncharged fly was directly proportional to the saturation charge. A model has been fitted to the relationship between distance travelled (and hence the number of steps taken) with charge. The reciprocal charge left on the surface has been visualised using photocopier toner. r