Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies (original) (raw)

Metabolic Strategies for Inhibiting Cancer Development

Advances in Nutrition, 2021

The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies fo...

Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment

Cell cycle (Georgetown, Tex.), 2018

Hepatocellular carcinoma (HCC) is a metabolically heterogeneous cancer and the use of glucose by HCC cells could impact their tumorigenicity. Dt81Hepa1-6 cells display enhanced tumorigenicity compared to parental Hepa1-6 cells. This increased tumorigenicity could be explained by a metabolic adaptation to more restrictive microenvironments. When cultured at high glucose concentrations, Dt81Hepa1-6 displayed an increased ability to uptake glucose (P<0.001), increased expression of 9 glycolytic genes, greater GTP and ATP (P<0.001), increased expression of 7 fatty acid synthesis-related genes (P<0.01) and higher levels of Acetyl-CoA, Citrate and Malonyl-CoA (P<0.05). Under glucose-restricted conditions, Dt81Hepa1-6 used their stored fatty acids with increased expression of fatty acid oxidation-related genes (P<0.01), decreased triglyceride content (P<0.05) and higher levels of GTP and ATP (P<0.01) leading to improved proliferation (P<0.05). Inhibition of lactate ...

A protective role for HIF-1 in response to redox manipulation and glucose deprivation: implications for tumorigenesis

Oncogene, 2002

We have investigated the role of HIF-1 in the cellular response to redox modulation via the inhibition of oxidative phosphorylation. We demonstrate that manipulation of redox in air, achieved by inhibiting cytochrome oxidase with cyanide, induces HIF-1 mediated transcription in wild-type CHO and HT1080 human tumour cells but not in CHO cells de®cient in the oxygen responsive, HIF-1a sub-unit of HIF-1. Hypoglycaemia attenuates cyanide-mediated transcription in nontransformed HIF-1 wild-type CHO cells but not the human tumour derived cell line. Cells lacking either HIF-1a, or the second composite sub-unit of HIF-1, HIF-1b, were markedly more sensitive to the combined stress of perturbed redox and hypoglycaemia than wild-type cells. As such conditions together with hypoxia are prevalent in tumours, these data suggest that HIF-1 may have a protective role in adaptation to the tumour microenvironment. In support of this we demonstrate that HIF-1a de®cient cells are less tumorigenic than wild-type cells. They showed a reduced growth rate when grown as xenografts in nude mice. This was not related to vascular parameters that were identical to those found in HIF-1 wild-type tumours. The HIF-1 de®cient tumours lacked focal expression of Glut-1 in hypoxic tumour regions. Compromized glucose uptake and metabolic adaptation to the tumour micro-environment may form the basis of the reduced tumorigenecity associated with these cells.

Metabolic reprogramming and two-compartment tumor metabolism: Opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells

Cell Cycle, 2012

Hypoxia-inducible factor (HIF) 1α and 2α are transcription factors responsible for the cellular response to hypoxia. the functional roles of HIF1α and HIF2α in cancer are distinct and vary among different tumor types. the aim of this study was to evaluate the compartment-specific role(s) of HIF1α and HIF2α in breast cancer. to this end, immortalized human fibroblasts and MDA-MB-231 breast cancer cells carrying constitutively active HIF1α or HIF2α mutants were analyzed with respect to their metabolic function(s) and ability to promote tumor growth in an in vivo setting. We observed that activation of HIF1α, but not HIF2α, in stromal cells promotes a shift toward aerobic glycolysis, with increased L-lactate production and a loss of mitochondrial activity. In a xenograft model, HIF1α-activated fibroblasts promoted the tumor growth of co-injected MDA-MB-231 cells without an increase in angiogenesis. Conversely, HIF2α-activated stromal cells did not favor tumor growth and behaved as the empty vector controls. Similarly, activation of HIF1α, but not HIF2α, in MDA-MB-231 cells promoted a shift toward aerobic glycolysis, with increased glucose uptake and L-lactate production. In contrast, HIF2α activation in cancer cells increased the expression of eGFR, Ras and cyclin D1, which are known markers of tumor growth and cell cycle progression. In a xenograft model, HIF1α activation in MDA-MB-231 cells acted as a tumor suppressor, resulting in an almost 2-fold reduction in tumor mass and volume. Interestingly, HIF2α activation in MDA-MB-231 cells induced a significant ~2-fold-increase in tumor mass and volume. Analysis of mitochondrial activity in these tumor xenografts using CoX (cytochrome C oxidase) staining demonstrated elevated mitochondrial oxidative metabolism (oXpHoS) in HIF2α-tumors. We conclude that the role(s) of HIF1α and HIF2α in tumorigenesis are compartment-specific. HIF1α acts as a tumor promoter in stromal cells but as a tumor suppressor in cancer cells. Conversely, HIF2α is a tumor promoter in cancer cells. Mechanistically, HIF1α-driven aerobic glycolysis in stromal cells supports cancer cell growth via the paracrine production of nutrients (such as L-lactate) that can "feed" cancer cells. However, HIF1α-driven aerobic glycolysis in cancer cells inhibits tumor growth. Finally, HIF2α activation in cancer cells induces the expression of known pro-oncogenic molecules and promotes the mitochondrial activity of cancer cells.

Glucose deprivation-induced metabolic oxidative stress and cancer therapy

Journal of Cancer Research and Therapeutics, 2009

Cancer cells (vs. normal cells) demonstrate evidence of oxidative stress, increased glycolysis, and increased pentose cycle activity. The oxidative stress in cancer cells has been hypothesized to arise from mitochondrial dysfunction leading to increased levels of hydroperoxides, and cancer cells have been proposed to compensate for this defect by increasing glucose metabolism. Glucose metabolism has also been shown to play a role in hydroperoxide detoxification via the formation of pyruvate (from glycolysis) and NADPH (from the pentose cycle). Furthermore, in cancer cells, glucose deprivation as well as treatment with 2-deoxyglucose (2 DG) has been shown to induce oxidative stress and cytotoxicity. Additionally, transformed cells have been shown to be more susceptible to glucose deprivation (and 2DG-)-induced cytotoxicity and oxidative stress than untransformed cells. These results support the hypothesis that cancer cells have a defect in mitochondrial respiration leading to increased steady state levels of O 2 • -and H 2 O 2 , and glucose metabolism is increased to compensate for this defect. The application of these findings to developing cancer therapies using 2DG combined with inhibitors of hydroperoxide metabolism to induce radio/chemosensitization is discussed, as well as the possibility that FDG-PET imaging may predict tumor responses to these therapies.

Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells

Free Radical Biology and Medicine, 1999

The mechanism of glucose deprivation-induced activation of Lyn kinase (Lyn), c-Jun N-terminal kinase 1 (JNK1) and increased expression of basic fibroblast growth factor (bFGF) and c-Myc was investigated in MCF-7/ADR adriamycin-resistant human breast carcinoma cells. Glucose deprivation significantly increased steady state levels of oxidized glutathione content (GSSG) and intracellular prooxidants (presumably hydroperoxides) as well as caused the activation of Lyn, JNK1, and the accumulation of bFGF and c-Myc mRNA. The suppression of GSSG accumulation and prooxidant production by treatment with the thiol antioxidant, N-acetylcysteine, also suppressed all the increases in kinase activation and gene expression observed during glucose deprivation. In addition, glucose deprivation was shown to induce oxidative stress in IMR90 SV40 transformed human fibroblasts, indicating that this phenomena is not limited to the MCF-7/ADR cell line. These and previous observations from our laboratory show that glucose deprivationinduced oxidative stress in MCF-7/ADR cells activates signal transduction involving Lyn, JNK1, and mitogen activated protein kinases (ERK1/ERK2) which results in increased bFGF and c-Myc mRNA accumulation. These results provide support for the hypothesis that alterations in intracellular oxidation/reduction reactions link changes in glycolytic metabolism to signal transduction and gene expression in these human tumor cells.

Cancer metabolism: a therapeutic perspective

Nature reviews. Clinical oncology, 2016

Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and nor...

Oxidative stress indicated by elevated expression of Nrf2 and 8-OHdG promotes hepatocellular carcinoma progression

Medical Oncology, 2017

Reactive oxygen species (ROS) is excessively generated in tumors creating an oxidative stress in tumor microenvironment. We investigated hepatic expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and 8-hydroxydeoxyguanosine (8-OHdG) in hepatocellular carcinoma (HCC) patients, and asked if ROS epigenetically upregulated Nrf2 and enhanced aggressiveness in HCC cells. Expression of Nrf2 (n = 100) and 8-OHdG (n = 53) was remarkably increased in HCC tissues compared with the noncancerous hepatic tissues. Elevated expression of 8-OHdG was associated with poor survival in HCC patients. H 2 O 2 , as ROS representative, provoked oxidative stress in HepG2 cells, indicated by increased protein carbonyl content and decreased total antioxidant capacity. Nrf2 expression and 8-OHdG formation were markedly increased in the H 2 O 2-treated cells compared with the untreated control. Co-treatment with antioxidants, tocopheryl acetate (TA) and S-adenosylmethionine (SAM) effectively attenuated expression of Nrf2 and 8-OHdG in H 2 O 2-treated cells. HepG2 cells treated with H 2 O 2 had significantly higher migration and invasion capabilities than the untreated control cells, and this aggressiveness was significantly inhibited by TA and SAM. Bisulfite sequencing revealed that CpG dinucleotides in Nrf2 promoter were unmethylated in the H 2 O 2-treated cells similar to the untreated control. In conclusion, robust histological evidence of increased antioxidative response and oxidative DNA damage in human HCC tissues was demonstrated. Elevated oxidative DNA lesion 8-OHdG was associated with shorter survival. Experimentally, ROS enhanced Nrf2 expression, 8-OHdG formation and tumor progression in HCC cells. These effects were inhibited by antioxidants. Therefore, oxidative stress-reducing regimens might be beneficial to diminish the ROS-induced HCC progression.

Glucose Deprivation‐Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism?

Annals of the New York Academy of Sciences, 2006

A BSTRACT : Recently, glucose deprivation-induced oxidative stress has been shown to cause cytotoxicity, activation of signal transduction (i.e., ERK1, ERK2, JNK, and Lyn kinase), and increased expression of genes associated with malignancy (i.e., bFGF and c-Myc) in MCF-7/ADR human breast cancer cells. These results have led to the proposal that intracellular oxidation/ reduction reactions involving hydroperoxides and thiols may provide a mechanistic link between metabolism, signal transduction, and gene expression in these human tumor cells. The current study shows that several other transformed human cell types appear to be more susceptible to glucose deprivationinduced cytotoxicity and oxidative stress than untransformed human cell types. In a matched pair of normal and SV40-transformed human fibroblasts the cytotoxic process is shown to be dependent upon ambient O 2 Ann. N.Y. Acad. Sci. 2000; 899:349-362. concentration. A theoretical model to explain the results is presented and implications to unifying modern theories of cancer are discussed.