The Bound State S-matrix of the Deformed Hubbard Chain (original) (raw)

A Quantum Affine Algebra for the Deformed Hubbard Chain

Takuya Matsumoto

2011

View PDFchevron_right

SU(2) × SU(2)-invariant scattering matrix of the Hubbard model

Vladimir Korepin

Nuclear Physics B, 1994

View PDFchevron_right

SU (2) xSU (2) Invariant Scattering Matrix of the Hubbard Model

Vladimir Korepin

1993

View PDFchevron_right

Coideal Quantum Affine Algebra and Boundary Scattering of the Deformed Hubbard Chain

Takuya Matsumoto

Arxiv preprint arXiv:1110.4596, 2011

View PDFchevron_right

Classical r matrix of the s u ( 2 | 2 ) super Yang-Mills spin chain

Alessandro Torrielli

Physical Review D, 2007

View PDFchevron_right

Quantum deformations of the one-dimensional Hubbard model

Peter Koroteev

Journal of Physics A: Mathematical and Theoretical, 2008

View PDFchevron_right

A Q-operator for open spin chains I. Baxter’s TQ relation

Bart Vlaar

Journal of Physics A: Mathematical and Theoretical

View PDFchevron_right

Generalized deformed SU(2) algebras in Nuclear Physics

C. Daskaloyannis

HNPS Proceedings, 2020

View PDFchevron_right

The Yangian symmetry of the Hubbard model

Vladimir Korepin

Physics Letters A, 1994

View PDFchevron_right

On a nonstandard two-parametric quantum algebra and its connections withU p, q (gl(2)) andU p, q(gl(1/1))

Ramaswamy Jagannathan

Zeitschrift f�r Physik C Particles and Fields, 1995

View PDFchevron_right

Super-Hubbard models and applications

Giovanni Feverati

Journal of High Energy Physics, 2007

View PDFchevron_right

Unitary Representations of U q (𝔰𝔩}(2,ℝ)),¶the Modular Double and the Multiparticle q -Deformed¶Toda Chain

Michel Semenov Tian Chanski

Communications in Mathematical Physics, 2002

View PDFchevron_right

Quantum Affine (Super)Algebras¶ U q ( A 1 (1) ) and U q ( C (2) (2) )

Jerzy Lukierski

Communications in Mathematical Physics, 2001

View PDFchevron_right

Scattering matrix and excitation spectrum of the Hubbard model

Vladimir Korepin

Physical Review Letters, 1994

View PDFchevron_right

Quantum Algebras in Nuclear Structure

Costas Daskaloyannis

Romanian Journal of Physics

View PDFchevron_right

Closed SU(2)q invariant spin chain and its operator content

S. Pallua

Physical Review D, 1998

View PDFchevron_right

Quantum-deformation algebra studied as an analytical equivalent of the s,d interacting boson model: Energy spectra

Andrei Ludu

Physical Review C, 1993

View PDFchevron_right

On Bethe Strings in the Two-Particle Sector of the Closed SU(2)Q Invariant Spin Chain

Marko Kolanovic

1999

View PDFchevron_right

A TWO-PARAMETER DEFORMED SUSY ALGEBRA FOR SUp/q(n)-COVARIANT (p,q)-DEFORMED FERMIONIC OSCILLATORS

Serdar Arıkan

Modern Physics Letters A, 2005

View PDFchevron_right

A non-symmetric Yang-Baxter Algebra for the Quantum Nonlinear Schrödinger Model

Bart Vlaar

2012

View PDFchevron_right

New Deformation of quantum oscillator algebra: Representation and some application

Norbert Hounkonnou

View PDFchevron_right

Quantum groups and their applications in nuclear physics

D. Bonatsos

Progress in Particle and Nuclear Physics, 1999

View PDFchevron_right

The classical su(2) invariance of the su(2) q -invariant XXZ spin chain

Alan Chodos

Letters in Mathematical Physics, 1991

View PDFchevron_right

A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model (PhD Thesis)

Bart Vlaar

2013

View PDFchevron_right

Multiboson Expansions for the Q-Oscillator and SU(1,1)Q

Javier Negro

Physics Letters a, 1994

View PDFchevron_right

Extended Supersymmetric Quantum Mechanics Algebras in Scattering States of Fermions off Domain Walls

Kostas Kleidis

International Journal of Theoretical Physics, 2014

View PDFchevron_right

Set-theoretic Yang–Baxter & reflection equations and quantum group symmetries

Agata Smoktunowicz

Letters in Mathematical Physics, 2021

View PDFchevron_right

Atomic model of supersymmetric Hubbard operators

Piers Coleman

Physical Review B, 2003

View PDFchevron_right

Effective su_q(2) models and polynomial algebras for fermion-boson Hamiltonians

Osvaldo Civitarese

Theoretical and Mathematical Physics

View PDFchevron_right

A family of affine quantum group invariant integrable extensions of the Hubbard Hamiltonian

Ara Sedrakyan

Nuclear Physics B, 1997

View PDFchevron_right

Quantum matrix algebra for the SU ( n ) WZNW model

O. Ogievetsky

Journal of Physics A: Mathematical and General, 2003

View PDFchevron_right

Fermion-boson interactions and quantum algebras

Osvaldo Civitarese

Physical Review C, 2002

View PDFchevron_right

Generalised integrable Hubbard models

Giovanni Feverati

View PDFchevron_right

The dynamical Yang–Baxter relation and the minimal representation of the elliptic quantum group

Shaoyou Zhao

Journal of Mathematical Physics, 2003

View PDFchevron_right