Transthyretin Is a Key Regulator of Myoblast Differentiation (original) (raw)
Related papers
Transthyretin: A Transporter Protein Essential for Proliferation of Myoblast in the Myogenic Program
International Journal of Molecular Sciences
Irregularities in the cellular uptake of thyroid hormones significantly affect muscle development and regeneration. Herein, we report indispensable role of transthyretin (TTR) in maintaining cellular thyroxine level. TTR was found to enhance recruitment of muscle satellite cells to the site of injury, thereby regulating muscle regeneration. Fluorescence-activated cell sorting (FACS) and immunofluorescence analysis of TTR wt (TTR wild type) and TTR kd (TTR knock-down) cells revealed that TTR controlled cell cycle progression by affecting the expression of Cyclin A2. Deiodinase 2 (D2) mediated increases in triiodothyronine levels were found to regulate the expression of myogenic marker, myogenin (MYOG). Moreover, use of a coumarin derivative (CD) revealed a significant reduction in cellular thyroxine, thereby indicating that TTR play a role in the transport of thyroxine. Taken together, these findings suggest that TTR mediated transport of thyroxine represents a survival mechanism necessary for the myogenic program. The results of this study will be highly useful to the strategic development of novel therapeutics to combat muscular dystrophies.
Differentiation, 1993
We recently reported that triiodothyronine (T3) enhances MyoD gene expression and accelerates terminal differentiation in murine C2 myoblasts. In this paper, we are interested in the effects of other hormones acting through related nuclear receptors. Retinoic acid (RA), but not estradiol or dexamethasone, is also able to enhance MyoD gene expression (about threefold). However, the effects of RA and T3 on myogenesis are quite distinct, with a much more potent RA action. Indeed, although T3 and RA positively regulate myogenesis with similar efficiency in poorly mitogenic conditions, in presence of high serum concentrations T3 can no longer trigger terminal differentiation whereas RA still remains efficient. Thus, serum concentration is a crucial parameter in discriminating between the effects of T3 and RA on myogenesis. The differential effects between these two hormone are likely to be related to the ability of RA-activated endogenous retinoic acid receptors (RARs) to induce C2 myoblasts growth-arrest and to extinguish AP1 activity (thought to act as an inhibitor of myogenesis) whereas T3-activated endogenous thyroid hormones receptors (THRs) are relatively inefficient. We propose that the much higher level of RARs in C2 cells versus THRs could to some extent account for the differential ability of T3 and RA to antagonize serum-regulated mitogenic pathways in myogenic cells. This study provides clear evidence for an important role of RA on MyoD gene expression and myogenesis and suggests that T3 and RA could play overlapping, but distinct, roles on muscle development.
Journal of Cell Science, 2013
Myogenesis involves expression of muscle-specific transcription factors such as myogenin and myocyte enhancer factor 2 (MEF2), and is essentially regulated by fluctuations of cytosolic Ca 2+ concentration. Recently we demonstrated that molecular players of storeoperated Ca 2+ entry (SOCE), stromal interacting molecule (STIM) and Orai, were fundamental in the differentiation process of postnatal human myoblasts. Besides STIM and Orai proteins, the family of transient receptor potential canonical (TRPC) channels was shown to be part of SOCE in several cellular systems. In the present study, we investigated the role of TRPC channels in the human myogenesis process. We demonstrate, using an siRNA strategy or dominant negative TRPC overexpression, that TRPC1 and TRPC4 participate in SOCE, are necessary for MEF2 expression, and allow the fusion process to generate myotubes of normal size. Conversely, the overexpression of STIM1 with TRPC4 or TRPC1 increased SOCE, accelerated myoblast fusion, and produced hypertrophic myotubes. Interestingly, in cells depleted of TRPC1 or TRPC4, the normalization of SOCE by increasing the extracellular calcium concentration or by overexpressing STIM1 or Orai1 was not sufficient to restore normal fusion process. A normal differentiation occurred only when TRPC channel was re-expressed. These findings indicate that Ca 2+ entry mediated specifically by TRPC1 and TRPC4 allow the formation of normal-sized myotubes.
Thymic Myoid Cells as a Source of Cells for Myoblast Transfer
Cell Transplantation, 2000
Transplantation of disaggregated myoblasts from normal donor to the muscles of a diseased host, or reimplantation of genetically modified host myoblasts, has been suggested as a possible route to therapy for inherited myopathies such as Duchenne muscular dystrophy, or to supply missing proteins that are required systemically in diseases such as hemophilia. With two exceptions, studies of myoblast transfer in the mouse have involved transplantation of donor myoblasts isolated from adult or neonatal skeletal muscle satellite cells. In this study we present evidence that thymic myoid cells are capable of participating in the regeneration of postnatal skeletal muscle, resulting in the expression of donor-derived proteins such as dystrophin and retrovirally encoded proteins such as β-galactosidase within host muscles. This leads us to conclude that thymic myoid cells may provide an alternative to myoblasts derived from skeletal muscle as a source of myogenic cells for myoblast transfer.
Myotube driven myogenic recruitment of cells during in vitro myogenesis
American Journal of Anatomy, 1995
Muscular dysgenesis (mdg) is a recessive lethal mutation in the mouse which drastically affects skeletal muscle development during embryonic life. Physiologically, the disease is characterized by a complete paralysis resulting from a lack of excitation-contraction coupling. Existing electrophysiological, biochemical, and genetic evidence shows that mdg/mdg mice express a basic alteration of L-type voltage-sensitive Ca2+ channels in skeletal muscle. Studies on mdg/mdg myotubes in primary culture have shown that +/+ fibroblasts or +/+ Schwann cells may fuse with them and correct their functional deficiency by genetic complementation. As the spontaneous formation of heterocaryons is thought to be an exclusive property of myoblasts, we asked whether fibroblasts may have changed their properties before fusion occurred. We used primary cells issued from sciatic nerves dissected from newborn transgenic mice carrying the pHuDes1-nls-LacZ transgene (Des-LacZ cells) as non-muscle cells. These cells were mainly fibroblasts (80%) positive for Thy 1.1 and Schwann cells positive for S100. The cultures were negative for myogenic markers (desmin, troponin T), did not form myotubes long-term, and did not display significant activation of the muscle reporter gene (pHuDes1-nls-LacZ). After a few days in coculture with dysgenic or normal myotubes, the muscle reporter gene (β-galactosidase) was detected both within dysgenic myotubes, correlating with the restoration of normal contractile activity, and normal myotubes. As well as confirming that fusion takes place, this shows that Des-LacZ cells nuclei incorporated into recipient myotubes express their own myogenic genes. Moreover, individual mononucleated Des-LacZ cells expressing β-galactosidase were observed, indicating that myogenic genes were being expressed before fusion. This suggests a mechanism of myotube driven myogenic recruitment of cells during the in vitro myogenesis. Analysis of the distribution of the induced Des-LacZ cells (positive for β-galactosidase) in compartmentalized muscle cocultures showed that in the presence of dysgenic myotubes, these cells were equally distributed in both myotube free and enriched areas, whereas in the presence of normal myotubes, the positive cells remained in close vicinity of the myotubes. This difference could be explained by the fact that the dysgenic phenotype might include release of the induction process from its normal controls. Our results are consistent with the idea of a transcellular mechanism triggering myogenic differentiation in non-muscle cells, and that myotubes themselves are able to drive myogenic recruitment of cells during the in vitro myogenesis. This phenomenon could be the result of either a myogenic induction in non-muscle cells, imposing a phenotypic change, or the activation of pre-myoblastic quiescent cells by the myotubes themselves. © 1995 Wiley-Liss, Inc.
Expression of chloride channel 1 mRNA in cultured myogenic cells: a marker of myotube maturation
FEBS Letters, 1996
The chloride channel CIC-1 is required to maintain a normal excitability of mature muscle fibers; its blockade leads to hyperexcitability, the hallmark of the disease myotonia. In mouse and rat myotubes, representing the embryonic stage of muscle, CIC-1 mRNA is not detectable by Northern blotting. From neonatal to adult, CIC-1 expression increases at least fourfold. Using RT-PCR and hybridization on cultured myotubes we found CIC-1 mRNA at a level of 0.4-1.1% of that in mature mouse muscle, and -<0.01% in myoblasts, at stages when desmin mRNA levels are already high. The level of CIC-1 mRNA is thus a sensitive and specific indicator of the maturation of skeletal muscle cells.
Myostatin is an inhibitor of myogenic differentiation
AJP: Cell Physiology, 2001
Myostatin (MSTN), a transforming growth factor (TGF)-β superfamily member, has been shown to negatively regulate muscle growth by inhibiting muscle precursor cell proliferation. Here, we stably transfected C2C12 cells with mouse MSTN cDNA to investigate its possible role in myoblast differentiation. We found that MSTN cDNA overexpression reversibly inhibits the myogenic process by downregulating mRNA levels of the muscle regulatory factors myoD and myogenin, as well as the activity of their downstream target creatine kinase. Taking into consideration that MSTN expression during development is restricted to muscle, our results suggest that MSTN probably regulates myogenic differentiation by an autocrine mechanism.
Differentiation, 1994
Cells of the embryonic mesenchymal cell line C3HlOT1/2 have revealed the potential that the four regulatory factors belonging to the MyoD family have to activate myogenesis. In the present study we have further investigated the myogenic phenotype of C3H10T1/2 cells stably transfected with either Myf5, MyoD, myogenin or MRF4 cDNAs. We have studied the influence of each transfected cDNA on expression of the four endogenous muscle regulatory genes and on the ability of these embryonic myogenic derivatives to express adult muscle genes. No trace of endogenous transcripts distinct from the exogenous one was found in any of the four converted populations at the myoblast stage. This indicates that cross-activation within the MyoD family does not occur at the myoblast stage in these cells. Similarly, evidence was obtained that auto-or cross-activation of the MyfS gene occurs neither at the myoblast stage nor at the myotube stage and that no autoactivation of the MRF4 gene occurs. Our results together with previous observations indicate that in C3H 10T1/2 myogenic derivatives: (1) Autoactivation at the myoblast stage is restricted to MyoD (2) Expression from each cDNA alone is sufficient to establish and maintain the myoblast phenotype (3) The endogenous MyfS gene is not mobilized. We have also observed that endogenous transcripts for MyoD and myogenin begin to accumulate at the onset of differentiation in the four myogenic derivatives, whereas accumulation of endogenous MRF4 transcripts starts after myotubes have formed and occurs at a much lower level (100-to 500-fold lower) than in differentiated cultures of myosatellite cells. However, neither this low level of MRF4 transcripts nor higher levels from the transfected MRF4 cDNA affected (prevented or stimulated) the accumulation of dystrophin transcripts or of adult muscle-gene transcripts (e.g., myosin heavy chain IIB, acetylcholine receptor &-subunit and M form of aldolase A), which occurred at similar levels in the four myogenic derivatives: Thus, despite the fact that MRF4 gene ex
The Biochemical journal, 1998
We have previously demonstrated an interaction between the major determinants of skeletal muscle phenotype by showing that continuous contractile activity represses the thyroid hormone (3,3', 5-tri-iodothyronine; T3)-dependent transcriptional activity of fast-type sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase (SERCA1), a characteristic of the fast phenotype. Both the free cytosolic Ca2+ concentration ([Ca2+]i) and the myogenic determination factors MyoD and myogenin have been implicated as mediators of the effect of contractile activity on skeletal muscle phenotype. Using L6 cells we have shown that an increase in the steady-state [Ca2+]i above the resting level of 120 nM indeed can mimic the effect of contractile activity on T3-dependent SERCA1 expression. We now show that the repressing effect of increased [Ca2+]i on T3-dependent SERCA1 expression in L6 cells is exerted at a pre-translational level and is accompanied by increased myogenin mRNA expression. Myogenin overexpress...