On the cavity size distribution in water and n-hexane (original) (raw)

Abstract

The cavity size distribution functions in water and n-hexane were determined by Pohorille and Pratt, in a series of important works, from molecular dynamics simulations. These functions are considered as experimental data. In the present investigation the ability of scaled particle theory in reproducing such distributions is tested. In the case of water the scaled particle theory results compare favorably with the experimental distribution if a proper choice of the size to be assigned to water molecules is performed. Specifically, a slight size increase from 2.70 to 2.80 A is necessary to reach agreement for the largest cavities detected by Pohorille and Pratt. In the case of n-hexane the scaled particle theory results do not agree with the experimental distribution especially in the region of small cavities. This deficiency is because a n-hexane molecule cannot be realistically treated as a single spherical exclusion volume. The implications of such findings are analyzed and discussed in depth.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (63)

  1. B. Lee, The physical origin of the low solubility of non-polar solutes in water, Biopolymers 24 (1985) 813-823.
  2. H. Reiss, Scaled particle methods in the statistical thermodynamics of fluids, Adv. Chem. Phys. 9 (1966) 1-84.
  3. R.A. Pierotti, A scaled particle theory of aqueous and non-aqueous solutions, Chem. Rev. 76 (1976) 717-726.
  4. B. Lee, Solvent reorganization contribution to the trans- fer thermodynamics of small non-polar molecules, Bio- polymers 31 (1991) 993-1008.
  5. M. Lucas, Size effect in transfer of non-polar solutes from gas or solvent to another solvent with a view on hydrophobic behavior, J. Phys. Chem. 80 (1976) 359-362.
  6. K. Soda, Solvent exclusion effect predicted by the scaled particle theory as an important factor of the hydrophobic effect, J. Phys. Soc. J. 62 (1993) 1782-1793.
  7. A. Wallqvist, D.G. Covell, On the origins of the hydro- phobic effect: observations from simulations of n-dode- cane in model solvents, Biophys. J. 71 (1996) 600-608.
  8. M. Ikeguchi, S. Shimizu, S. Nakamura, K. Shimizu, Roles of hydrogen bonding and the hard core of water on hydrophobic hydration, J. Phys. Chem. Part B 102 (1998) 5891-5898.
  9. E. Gallicchio, M.M. Kubo, R.M. Levy, Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation, J. Phys. Chem. Part B 104 (2000) 6271-6285.
  10. G. Graziano, Size dependence of the solubility of non- polar compounds in different solvents, Can. J. Chem. 80 (2002) 401-412.
  11. A. Pohorille, L.R. Pratt, Cavities in molecular liquids and the theory of hydrophobic solubilities, J. Am. Chem. Soc. 112 (1990) 5066-5074.
  12. L.R. Pratt, A. Pohorille, Theory of hydophobicity: tran- sient cavities in molecular liquids, Proc. Natl. Acad. Sci. USA 89 (1992) 2995-2999.
  13. L.R. Pratt, A. Pohorille, in: M.U. Palma, M.B. Palma- Vittorelli, F. Parak (Eds.), Water-biomolecule interac- tions, Hydrophobic effects from cavity statistics, Societa Ìtaliana di Fisica, Bologna, 1993, pp. 261-268.
  14. G. Hummer, S. Garde, A.E. Garcia, A. Pohorille, L.R. Pratt, An information theory model of hydrophobic interactions, Proc. Natl. Acad. Sci. USA 93 (1996) 8951-8955.
  15. G. Hummer, S. Garde, A.E. Garcia, M.E. Paulaitis, L.R. Pratt, Hydrophobic effects on a molecular scale, J. Phys. Chem. Part B 102 (1998) 10469-10482.
  16. A. Pohorille, Transient cavities in liquids and the nature of the hydrophobic effect, Pol. J. Chem. 72 (1998) 1680-1690.
  17. M.A. Gomez, L.R. Pratt, G. Hummer, S. Garde, Molec- ular realism in default models for information theories of hydrophobic effects, J. Phys. Chem. Part B 103 (1999) 3520-3523.
  18. L.R. Pratt, G. Hummer, S. Garde, in: C. Caccamo, J.P. Hansen, G. Stell (Eds.), New approaches to problems in liquid state theory, Theories of hydrophobic effects and the description of free volume in complex liquids, NATO Science Series 529, Kluwer, The Netherlands, 1999, pp. 407-420.
  19. G. Hummer, S. Garde, A.E. Garcia, L.R. Pratt, New perspectives on hydrophobic effects, Chem. Phys. 258 (2000) 349-370.
  20. S. Garde, H.S. Ashbaugh, Temperature dependence of hydrophobic hydration and entropy convergence in an isotropic model of water, J. Chem. Phys. 115 (2001) 977-982.
  21. L.R. Pratt, Molecular theory of hydrophobic effects: 'She is too mean to have her name repeated, Annu. Rev. Phys. Chem. 53 (2002) 409-436.
  22. X. Siebert, G. Hummer, Hydrophobicity maps of the N- peptide coiled coil of HIV-1 gp41, Biochemistry 41 (2002) 2956-2961.
  23. B. Madan, B. Lee, Role of hydrogen bonds in hydro- phobicity: the free energy of cavity formation in water models with and without the hydrogen bonds, Biophys. Chem. 51 (1994) 279-289.
  24. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943) 1-89.
  25. D. Chandler, J.D. Weeks, H.C. Andersen, van der Waals picture of liquids, solids and phase-transformations, Science 220 (1983) 787-794.
  26. R.C. Tolman, The principles of statistical mechanics, Oxford University Press, London, 1938, pp. 636-641.
  27. B. Lee, A procedure for calculating thermodynamic functions of cavity formation from the pure solvent simulation data, J. Chem. Phys. 83 (1985) 2421-2425.
  28. H. Reiss, Statistical geometry in the study of fluids and porous media, J. Phys. Chem. 96 (1992) 4736-4747.
  29. H. Reiss, H.L. Frisch, J.L. Lebowitz, Statistical mechan- ics of rigid spheres, J. Chem. Phys. 31 (1959) 369-380.
  30. H. Reiss, R.V. Casberg, Radial distribution function for hard spheres from scaled particle theory, and an improved equation of state, J. Chem. Phys. 61 (1974) 1107-1114.
  31. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926-935.
  32. W.L. Jorgensen, J.D. Madura, C.J. Swenson, Optimized intermolecular potential functions for liquid hydrocar- bons, J. Am. Chem. Soc. 106 (1984) 6638-6646.
  33. R.A. Pierotti, The solubility of gases in liquids, J. Phys. Chem. 67 (1963) 1840-1845.
  34. R.A. Pierotti, Aqueous solutions of non-polar gases, J. Phys. Chem. 69 (1965) 281-288.
  35. A. Ben-Naim, H.L. Friedman, On the application of the scaled particle theory to aqueous solutions of non-polar gases, J. Phys. Chem. 71 (1967) 448-449.
  36. F.H. Stillinger, Structure in aqueous solutions of non- polar solutes from the standpoint of scaled-particle theory, J. Solution Chem. 2 (1973) 141-158.
  37. R.A. Pierotti, On the scaled-particle theory of dilute aqueous solutions, J. Phys. Chem. 71 (1967) 2366-2367.
  38. H.S. Ashbaugh, M.E. Paulaitis, Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes, J. Am. Chem. Soc. 123 (2001) 10721-10728.
  39. J.R. Henderson, Solvation of a solvophobic sphere, J. Chem. Phys. 116 (2002) 5039-5045.
  40. K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales, J. Phys. Chem. Part B 103 (1999) 4570-4577.
  41. D.R. Lide (Ed.), Handbook of chemistry and physics, 77th edition, CRC Press, Boca Raton, FL, 1996.
  42. S. Shimizu, M. Ikeguchi, S. Nakamura, K. Shimizu, Size dependence of transfer free energies: a hard-sphere- chain-based formalism, J. Chem. Phys. 110 (1999) 2971-2982.
  43. A.H. Narten, H.A. Levy, Observed diffraction pattern and proposed models of liquid water, Science 165 (1969) 447-454.
  44. A.K. Soper, F. Bruni, M.A. Ricci, Site-site pair corre- lation functions of water from 25 to 400 8C: revised analysis of new and old diffraction data, J. Chem. Phys. 106 (1997) 247-254.
  45. J.M. Sorenson, G. Hura, R.M. Glaeser, T. Head-Gordon, What can X-ray scattering tell us about the radial distribution functions of water?, J. Chem. Phys. 113 (2000) 9149-9161.
  46. G. Hura, T. Head-Gordon, Water structure from scatter- ing experiments and simulation, Chem. Rev. 102 (2002) 2651-2670.
  47. B. Lee, F.M. Richards, The interpretation of protein structures: estimation of static accessibility, J. Mol. Biol. 55 (1971) 379-400.
  48. H.J.C. Berendsen, W.F. van Gunsteren, J.P.M. Postma, J. Hermans, in: B. Pullman (Ed.), Intermolecular forces, Interaction models for water in relation to protein hydration, Reidel, Dordrecht, 1981, pp. 331-342.
  49. M. Kodaka, Reevaluation in interpretation of hydropho- bicity by scaled particle theory, J. Phys. Chem. B 105 (2001) 5592-5594.
  50. G. Graziano, Comment on reevaluation in interpretation of hydrophobicity by scaled particle theory, J. Phys. Chem. Part B 106 (2002) 7713-7716.
  51. E. Wilhelm, R. Battino, Estimation of Lennard-Jones (6,12) pair potential parameters from gas solubility data, J. Chem. Phys. 55 (1971) 4012-4017.
  52. D. Ben-Amotz, K.G. Willis, Molecular hard-sphere volume increments, J. Phys. Chem. 97 (1993) 7736-7742.
  53. M. Prevost, I. Tomas-Oliveira, J.P. Kocher, S.J. Wodak, Free energy of cavity formation in liquid water and hexane, J. Phys. Chem. 100 (1996) 2738-2743.
  54. J.P. Kocher, M. Prevost, S.J. Wodak, B. Lee, Properties of the protein matrix revealed by the free energy of cavity formation, Structure 4 (1996) 1517-1529.
  55. L.E.S. de Souza, A. Stamatopoulou, D. Ben-Amotz, Chemical potentials of hard sphere solutes in hard sphere solvents. Monte Carlo simulations and analytical approximations, J. Chem. Phys. 100 (1994) 1456-1459.
  56. L.E.S. de Souza, D. Ben-Amotz, Hard fluid model for molecular solvation free energies, J. Chem. Phys. 101 (1994) 9858-9863.
  57. G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Leland, Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys. 54 (1971) 1523-1525.
  58. I. Tomas-Oliveira, S.J. Wodak, Thermodynamics of cavity formation in water and n-hexane using Widom particle insertion method, J. Chem. Phys. 111 (1999) 8576-8587.
  59. J.S. Rowlinson, F.L. Swinton, Liquids and liquid mixtures, Butterworths, London, 1982.
  60. S. Garde, G. Hummer, A.E. Garcia, M.E. Paulaitis, L.R. Pratt, Origin of entropy convergence in hydrophobic hydration and protein folding, Phys. Rev. Lett. 77 (1996) 4966-4968.
  61. D.M. Huang, D. Chandler, Cavity formation and the drying transition in the Lennard-Jones fluid, Phys. Rev. E 61 (2000) 1501-1506.
  62. L.R. Pratt, A. Pohorille, Hydrophobic effects and mod- eling of biophysical aqueous solution interfaces, Chem. Rev. 102 (2002) 2671-2692.
  63. H.S. Ashbaugh, T.M. Truskett, P.G. Debenedetti, A simple molecular thermodynamic theory of hydrophobic hydration, J. Chem. Phys. 116 (2002) 2907-2921.