Majorana fermions in chiral topological ferromagnetic nanowires (original) (raw)

Motivated by a recent experiment in which zero-bias peaks have been observed in scanning tunneling microscopy (STM) experiments performed on chains of magnetic atoms on a superconductor, we show, by generalizing earlier work, that a multichannel ferromagnetic wire deposited on a spin-orbit coupled superconducting substrate can realize a non-trivial chiral topological superconducting state with Majorana bound states localized at the wire ends. The non-trivial topological state occurs for generic parameters requiring no fine tuning, at least for very large exchange spin splitting in the wire. We theoretically obtain the signatures which appear in the presence of an arbitrary number of Majorana modes in multi-wire systems incorporating the role of finite temperature, finite potential barrier at the STM tip, and finite wire length. These signatures are presented in terms of spatial profiles of STM differential conductance which clearly reveal zero energy Majorana end modes and the prediction of a multiple Majorana based fractional Josephson effect. A critical comparison of our results with the experimental data shows a basic inconsistency in the interpretation of the Fe nanowire STM experiment in terms of Majorana zero modes-in particular, the observation of the precise localization of the Majorana zero modes at the wire ends cannot be reconciled with the extremely small topological superconducting gap (and the associated extremely weak Majorana tunneling peak) observed simultaneously. Other than this rather disturbing basic incompatibility, for which we can offer no resolution at this stage, most other aspects of the experimental phenomenology are reasonably well explained by our theory.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact