The transcriptome response of the ruminal methanogen Methanobrevibacter ruminantium strain M1 to the inhibitor lauric acid (original) (raw)

The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions

PLoS ONE, 2010

Background: Methane (CH 4 ) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO 2 ). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed.

Microbial ecosystem and methanogenesis in ruminants

animal, 2010

Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2and CO2as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen (‘H2’ from this point on) is the key element that drives methane production in the rumen. Among H2produc...

{"__content__"=>"Expression, Purification, and Characterization of ()-Sulfolactate Dehydrogenase (ComC) from the Rumen Methanogen SM9.", "i"=>[{"__content__"=>"R"}, {"__content__"=>"Methanobrevibacter millerae"}]}

Archaea (Vancouver, B.C.), 2017

Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC from Methanobrevibacter millerae SM9 was cloned and expressed in Escherichia coli and biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen for α-ketoglutarate. Optimal activity was observed at pH 6.5. The apparent K M for coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate the V max was 93.9 μmol min −1 mg −1 and k cat was 62.8 s −1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.

Expression, Purification, and Characterization of (R)-Sulfolactate Dehydrogenase (ComC) from the Rumen MethanogenMethanobrevibacter milleraeSM9

Archaea, 2017

Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC from Methanobrevibacter millerae SM9 was cloned and expressed in Escherichia coli and biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen for α-ketoglutarate. Optimal activity was observed at pH 6.5. The apparent K M for coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate the V max was 93.9 μmol min −1 mg −1 and k cat was 62.8 s −1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.

RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis

Globally, methane (CH4) emissions account for 40% to 45% of greenhouse gas emissions from ruminant livestock, with over 90% of these emissions arising from enteric fermentation. Reduction of carbon dioxide to CH4 is critical for efficient ruminal fermentation because it prevents the accumulation of reducing equivalents in the rumen. Methanogens exist in a symbiotic relationship with rumen protozoa and fungi and within biofilms associated with feed and the rumen wall. Genomics and transcriptomics are playing an increasingly important role in defining the ecology of ruminal methanogenesis and identifying avenues for its mitigation. Metagenomic approaches have provided information on changes in abundances as well as the species composition of the methanogen community among ruminants that vary naturally in their CH4 emissions, their feed efficiency, and their response to CH4 mitigators. Sequencing the genomes of rumen methanogens has provided insight into surface proteins that may prove useful in the development of vaccines and has allowed assembly of biochemical pathways for use in chemogenomic approaches to lowering ruminal CH4 emissions. Metagenomics and metatranscriptomic analysis of entire rumen microbial communities are providing new perspectives on how methanogens interact with other members of this ecosystem and how these relationships may be altered to reduce methanogenesis. Identification of community members that produce antimethanogen agents that either inhibit or kill methanogens could lead to the identification of new mitigation approaches. Discovery of a lytic archaeophage that specifically lyses methanogens is 1 such example. Efforts in using genomic data to alter methanogenesis have been hampered by a lack of sequence information that is specific to the microbial community of the rumen. Programs such as Hungate1000 and the Global Rumen Census are increasing the breadth and depth of our understanding of global ruminal microbial communities, steps that are key to using these tools to further define the science of ruminal methanogenesis.

Pure culture studies of inhibitors for methanogenic bacteria

Antonie van Leeuwenhoek, 1972

1972. Pure culture studies of inhibitors for methanogenic bacteria. Antonie van Leeuwenhoek 38: 281-287. Methane production in pure cultures of Methanobacterium ruminantium and Methanobacterium M.o.H. strains is inhibited by halogenated methane analogues in ~tM concentrations and by unsaturated long-chain fatty acids or sulfite in mM concentrations.

Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies

Animal, 2013

Ruminant-derived methane (CH4), a potent greenhouse gas, is a consequence of microbial fermentation in the digestive tract of livestock. Development of mitigation strategies to reduce CH4emissions from farmed animals is currently the subject of both scientific and environmental interest. Methanogens are the sole producers of ruminant CH4, and therefore CH4abatement strategies can either target the methanogens themselves or target the other members of the rumen microbial community that produce substrates necessary for methanogenesis. Understanding the relationship that methanogens have with other rumen microbes is crucial when considering CH4mitigation strategies for ruminant livestock. Genome sequencing of rumen microbes is an important tool to improve our knowledge of the processes that underpin those relationships. Currently, several rumen bacterial and archaeal genome projects are either complete or underway. Genome sequencing is providing information directly applicable to CH4mi...

Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph

Microorganisms, 2018

Methanotrophs are a specialized group of bacteria that can utilize methane (CH 4) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocella silvestris BL2 and Methyloferula stellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferula stellata is an obligate methanotroph, while Methylocella silvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferula stellata and Methylocella silvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1) The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocella silvetris; (2) Growth on methane alone upregulated the mmo promoter of Methylocella silvetris in its native background but not in the obligate methanotroph Methyloferula stellata; (3) The mmo promoter of Methyloferula stellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocella silvetris. These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocella silvetris compared to the obligate methanotroph Methyloferula stellata.