The 3-phosphoglycerate kinase gene of the yeastYarrowia lipolytica de-represses on gluconeogenic substrates (original) (raw)

The Gene YALI0E20207g from Yarrowia lipolytica Encodes an N-Acetylglucosamine Kinase Implicated in the Regulated Expression of the Genes from the N-Acetylglucosamine Assimilatory Pathway

PLOS ONE, 2015

The non-conventional yeast Yarrowia lipolyticapossesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway-identified by a BLAST search-was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose.

Control of Lipid Accumulation in the Yeast Yarrowia lipolytica

Applied and Environmental Microbiology, 2008

A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This ⌬gut2 mutant strain demonstrated a threefold increase in lipid accumulation compared to the wild-type strain. However, mobilization of lipid reserves occurred after the exit from the exponential phase due to ␤-oxidation. Y. lipolytica contains six acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX6 genes, that catalyze the limiting step of peroxisomal ␤-oxidation. Additional deletion of the POX1 to POX6 genes in the ⌬gut2 strain led to a fourfold increase in lipid content. The lipid composition of all of the strains tested demonstrated high proportions of FFA. The size and number of the lipid bodies in these strains were shown to be dependent on the lipid composition and accumulation ratio.

The Yarrowia lipolytica PAH1 homolog contributes but is not required for triacylglycerol biosynthesis during growth on glucose

Yeast

The PAH1-encoded phosphatidate phosphatase (PAP) catalyzes the Mg 2+-dependent dephosphorylation of phosphatidate to produce diacylglycerol, which can be acylated to form triacylglycerol (TAG). In the model oleaginous yeast Yarrowia lipolytica, TAG is the major lipid produced, and its biosynthesis requires a continuous supply of diacylglycerol, which can be provided by the PAP reaction. However, the regulation of Pah1 has not been studied in detail in Y. lipolytica, and thus its contribution to the biosynthesis of TAG in this yeast is not well understood. In this work, we examined the regulation of the PAH1-mediated PAP activity and Pah1 abundance and localization in cells growing on glucose. We found that Pah1 abundance and localization were regulated in a growth-dependent manner, yet the loss of Pah1 did not have a major effect on PAP activity. We also examined the effects of the Y. lipolytica pah1Δ mutation on cell physiology and lipid biosynthesis. The lack of Pah1 in the pah1Δ mutant resulted in a moderate decrease in TAG levels and an increase in phospholipid levels. These results showed that Pah1 contributed to TAG biosynthesis in Y. lipolytica but also suggested the presence of other activities in the pah1Δ mutant that compensate for the loss of Pah1. Also, the levels of linoleic acid were elevated in pah1Δ cells with a concomitant decrease in the oleic acid levels suggesting that the pah1Δ mutation affected the biosynthesis of fatty acids.

The Yarrowia lipolytica PAH1 homologue contributes but is not required for triacylglycerol biosynthesis during growth on glucose

Yeast, 2020

The PAH1-encoded phosphatidate phosphatase (PAP) catalyzes the Mg 2+-dependent dephosphorylation of phosphatidate to produce diacylglycerol, which can be acylated to form triacylglycerol (TAG). In the model oleaginous yeast Yarrowia lipolytica, TAG is the major lipid produced, and its biosynthesis requires a continuous supply of diacylglycerol, which can be provided by the PAP reaction. However, the regulation of Pah1 has not been studied in detail in Y. lipolytica, and thus its contribution to the biosynthesis of TAG in this yeast is not well understood. In this work, we examined the regulation of the PAH1-mediated PAP activity and Pah1 abundance and localization in cells growing on glucose. We found that Pah1 abundance and localization were regulated in a growth-dependent manner, yet the loss of Pah1 did not have a major effect on PAP activity. We also examined the effects of the Y. lipolytica pah1Δ mutation on cell physiology and lipid biosynthesis. The lack of Pah1 in the pah1Δ mutant resulted in a moderate decrease in TAG levels and an increase in phospholipid levels. These results showed that Pah1 contributed to TAG biosynthesis in Y. lipolytica but also suggested the presence of other activities in the pah1Δ mutant that compensate for the loss of Pah1. Also, the levels of linoleic acid were elevated in pah1Δ cells with a concomitant decrease in the oleic acid levels suggesting that the pah1Δ mutation affected the biosynthesis of fatty acids.

Vectors for gene expression and amplification in the yeastYarrowia lipolytica

Yeast, 2001

New vector systems were developed for gene expression in Y. lipolytica. These plasmids contain: (a) as integration target sequences, either a rDNA region or the long terminal repeat zeta of the Y. lipolytica retrotransposon Ylt1; (b) the YlURA3 gene as selection marker for Y. lipolytica, either as the non-defective ura3d1 allele for single integration or the promotor truncated ura3d4 allele for multiple integration; (c) the inducible ICL1 or XPR2 promoters for gene expression; and (d) unique restriction sites for gene insertion. Multiple plasmid integration occurred as inserted tandem-repeats, which are present at 3±39 copies per cell. A correlation between gene copy number and the expressed enzyme activity was demonstrated with Escherichia coli lacZ as reporter gene under the control of the regulated ICL1 promoter. Increases in copy numbers from 5 to 13 for the lacZ expression cassettes resulted in an up to 10±11-fold linear increase of the b-galactosidase activity in multicopy transformants during their growth on ethanol or glucose, compared with the low-copy replicative plasmid transformants (1.6 plasmid copies). These new tools will enhance the interest in Y. lipolytica as an alternative host for heterologous protein production.

Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeastYarrowia lipolytica

Biotechnology and Bioprocess Engineering, 2000

Promoters of the genes G3P, ICL1, POT1, POX1, POX2 and POX5 of the yeast Y. lipolytica were studied in respect to their regulations and activities during growth on different carbon sources. The aim of this study was to select suitable promoters for high expression of heterologous genes in this yeast. For this purpose the promoters were fused with the reporter gene lacZ of E. coli and integrated as single copies into the genome of Y. lipolytica strain PO1d. The measurement of expressed activities of β-galactosidase revealed that pICL1, pPOX2 and pPOT1 are the strongest regulable promoters available for Y. lipolytica, at present. pPOX2 and pPOT1 were highly induced during growth on oleic acid and were completely repressed by glucose and glycerol. pICL1 was strongly inducible by ethanol besides alkanes and fatty acids, however, not completely repressible by glucose or glycerol. Ricinoleic acid methyl ester appeared as a very strong inducer for pPOT1 and pPOX2, in spite of that it inhibited growth of Y. lipolytica transformants.

A Rac Homolog Is Required for Induction of Hyphal Growth in the Dimorphic Yeast Yarrowia lipolytica

Journal of Bacteriology, 2000

Dimorphism in fungi is believed to constitute a mechanism of response to adverse conditions and represents an important attribute for the development of virulence by a number of pathogenic fungal species. We have isolated YlRAC1, a gene encoding a 192-amino-acid protein that is essential for hyphal growth in the dimorphic yeast Yarrowia lipolytica and which represents the first Rac homolog described for fungi. YlRAC1 is not an essential gene, and its deletion does not affect the ability to mate or impair actin polarization in Y. lipolytica. However, strains lacking functional YlRAC1 show alterations in cell morphology, suggesting that the function of YlRAC1 may be related to some aspect of the polarization of cell growth. Northern blot analysis showed that transcription of YlRAC1 increases steadily during the yeast-to-hypha transition, while Southern blot analysis of genomic DNA suggested the presence of several RAC family members in Y. lipolytica. Interestingly, strains lacking functional YlRAC1 are still able to grow as the pseudohyphal form and to invade agar, thus pointing to a function for YlRAC1 downstream of MHY1, a previously isolated gene encoding a C(2)H(2)-type zinc finger protein with the ability to bind putative stress response elements and whose activity is essential for both hyphal and pseudohyphal growth in Y. lipolytica.

The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica

Microbial Cell Factories

Background During the pentose phosphate pathway (PPP), two important components, NADPH and pentoses, are provided to the cell. Previously it was shown that this metabolic pathway is a source of reducing agent for lipid synthesis from glucose in the yeast Yarrowia lipolytica. Y. lipolytica is an attractive microbial host since it is able to convert untypical feedstocks, such as glycerol, into oils, which subsequently can be transesterified to biodiesel. However, the lipogenesis process is a complex phenomenon, and it still remains unknown which genes from the PPP are involved in lipid synthesis. Results To address this problem we overexpressed five genes from this metabolic pathway: transaldolase (TAL1, YALI0F15587g), transketolase (TKL1, YALI0E06479g), ribulose-phosphate 3-epimerase (RPE1, YALI0C11880g) and two dehydrogenases, NADP+-dependent glucose-6-phosphate dehydrogenase (ZWF1, YALI0E22649g) and NADP+-dependent 6-phosphogluconate dehydrogenase (GND1, YALI0B15598g), simultaneous...

Increasing lipid yield in Yarrowia lipolytica through phosphoketolase and phosphotransacetylase expression in a phosphofructokinase deletion strain

Biotechnology for Biofuels, 2021

Background Lipids are important precursors in the biofuel and oleochemical industries. Yarrowia lipolytica is among the most extensively studied oleaginous microorganisms and has been a focus of metabolic engineering to improve lipid production. Yield improvement, through rewiring of the central carbon metabolism of Y. lipolytica from glucose to the lipid precursor acetyl-CoA, is a key strategy for achieving commercial success in this organism. Results Building on YB-392, a Y. lipolytica isolate known for stable non-hyphal growth and low citrate production with demonstrated potential for high lipid accumulation, we assembled a heterologous pathway that redirects carbon flux from glucose through the pentose phosphate pathway (PPP) to acetyl-CoA. We used phosphofructokinase (Pfk) deletion to block glycolysis and expressed two non-native enzymes, phosphoketolase (Xpk) and phosphotransacetylase (Pta), to convert PPP-produced xylulose-5-P to acetyl-CoA. Introduction of the pathway in a p...