Temperature and Denaturing Substances Influence on Lab-on-a-Chip Electrophoresis (original) (raw)
Related papers
Journal of Medical Biochemistry, 2009
Advanced Techniques in Clinical Practice: Use of Lab-on-a-Chip Electrophoresis and Other Methods in Protein ProfilingProteins in clinical practice are analyzed as important parameters in the determination and treatment of different diseases. The scopes of the analyses are mainly concentrated in two levels - analyses of the complete protein profile, or determination of an isolated protein. In this work, despite of the use of conventional methods, mainly electrophoresis, new techniques have been implemented in protein analyses. Lab-on-a-chip is an electrophoretic technique that, when optimized, provides analyses of the total protein profile. When normal samples are compared to samples obtained from patients with different neurological diseases, characteristic patterns can be noted. Also, correlation and comparison can be made between the newly developed microchip electrophoresis method and the results obtained using the conventional techniques. When an analysis of a specific protein i...
2015
Author(s): Duncombe, Todd Andrew | Advisor(s): Herr, Amy E | Abstract: Seminal bioanalytical technologies for high-throughput analysis, such as flow cytometry and capillary electrophoresis, were leveraging microfluidic physical phenomena long before the advent of the term “microfluidics”. Transitioning from the initial solid-state micro-electronic fabrication approaches, microfluidic fabrication has moved towards polymer based technologies that are amenable to a rapid design, prototype, and test development cycle. In my dissertation, I took advantage of these features to create new tools for performing electrophoresis-based protein assays over a range of applications, including, rapid low-power electrophoretic immunoassays, open-microfluidic ‘soft-MEMS’ platform for high-throughput protein analysis, and spatially a temporally controlled separation media for enhanced single-cell western blotting assays.Rapid low-power electrophoretic immunoassay: To reduce the power requirements for ...
Recent innovations in protein separation on microchips by electrophoretic methods: An update
Electrophoresis, 2010
Lab-on-a-chip electrophoresis is becoming increasingly useful for protein analysis, thanks to recent developments in this field. This review is an update of the review we published at the start of 2008 [Peng, Y., Pallandre, A., Tran, N. T., Taverna, M., Electrophoresis 2008, 29, 156–177]. The superiority of polymers for the manufacture of analytical microchips has been confirmed. This trend implies several modifications to the processes previously used with glass/silicon chips and requires a better understanding of the interfacial phenomena of these materials. Significant progress in chip-based techniques for protein analysis has been made in the last 2 years. In addition to advances in traditional electrokinetic modes, counter-flow gradient focusing techniques have emerged as useful methods not only for separation, but also for the online preconcentration of samples. This review, with more than 175 references, presents recent advances and novel strategies for EOF measurement, surface treatment, sample pretreatment, detection and innovations relating to the different modes of separation.
Digital microfluidic assay for protein detection
Proceedings of the National Academy of Sciences, 2014
Global studies of the human proteome have revealed a plethora of putative protein biomarkers. However, their application for early disease detection remains at a standstill without suitable methods to realize their utility in the clinical setting. There thus continues to be tremendous interest in developing new technology for sensitive protein detection that is both low in cost and carries a small footprint to be able to be used at the point of care. The current gold standard method for protein biomarker detection is the ELISA, which measures protein abundance using bulky fluorescent scanners that lack portability. Here, we present a digital microfluidic platform for protein biomarker detection that is low in cost compared with standard optical detection methods, without any compromise in sensitivity. This platform furthermore makes use of simple electronics, enabling its translation into a portable handheld device, and has been developed in a manner that can easily be adapted to assay different types of proteomic biomarkers. We demonstrate its utility in quantifying not only protein abundance, but also activity. Interleukin-6 abundance could be assayed from concentrations as low as 50 pM (an order of magnitude lower than that detectable by a comparable laboratory designed ELISA) using less than 5 μL of sample, and Abelson tyrosine kinase activity was detectable in samples containing 100 pM of kinase.
A lab-on-a-chip for biological fluids analysis
2000
This paper presents a microfluidic system for helping health professionals with rapid and accurate biological fluids analysis as well as for helping the patient himself at home. This microsystem consists of two wafers: a Pyrex glass wafer containing the microlaboratory (microchannels to carry chemical reagents and sample solutions) and a silicon wafer including the protein detection system (by colour analysis based on optical absorption). Albumin in urine is the first target of the microsystem, but it can be applied to other proteins. This microsystem eliminates the need of expensive readout optics and opens the road to low-cost disposable devices.
A simple microfluidic chip design for fundamental bioseparation
Journal of analytical methods in chemistry, 2014
A microchip pressure-driven liquid chromatographic system with a packed column has been designed and fabricated by using poly(dimethylsiloxane) (PDMS). The liquid chromatographic column was packed with mesoporous silica beads of Ia3d space group. Separation of dyes and biopolymers was carried out to verify the performance of the chip. A mixture of dyes (fluorescein and rhodamine B) and a biopolymer mixture (10 kDa Dextran and 66 kDa BSA) were separated and the fluorescence technique was employed to detect the movement of the molecules. Fluorescein molecule was a nonretained species and rhodamine B was attached onto silica surface when dye mixture in deionized water was injected into the microchannel. The retention times for dextran molecule and BSA molecule in biopolymer separation experiment were 45 s and 120 s, respectively. Retention factor was estimated to be 3.3 for dextran and 10.4 for BSA. The selectivity was 3.2 and resolution was 10.7. Good separation of dyes and biopolymer...
Advanced cleanup process of the free-flow microfluidic device for protein analysis
2008
The treatment of samples preparation is generally recognized as a bottleneck for the rapid analysis of protein because of the off-chip performance in many cases. In this study, we used the charge characteristics of protein to develop a simple and rapid electro-microfluidic desalting system as an effective means of cleaning up protein sample. When we loaded a urea-rich protein sample and a buffer solution into a free-flow zone electrophoresis (FFZE) chamber, the microfluidic device was able to separate the charged protein sample and the non-charged urea. With a 90 V electric field in the FFZE chamber, the removal efficiency of the urea was about 88% and the recovery of the protein was 78%. In addition, the desalted protein sample used in this device showed significant improvement with respect to the MALDI-TOF-MS spectrum signal of a fusion protein, which was fused to the gold-binding polypeptide with enhanced green fluorescent protein, as a model protein. The inflow of the purified fusion protein sample can be successfully immobilized on the gold surface and analyzed by confocal fluorescence microscopy and surface plasmon resonance for biotechnological sensors.
Recent innovations in protein separation on microchips by electrophoretic methods
Electrophoresis, 2008
Microchips for analytical purposes have attracted great attention over the last 20 years. In the present review, we focus on the most recent development of microchips for electrophoretic separation of proteins. This review starts with a short recalling about the microchips covering the basic microchip layout for CE and the commercial chips and microchip platforms. A short paragraph is dedicated to the surface treatment of microchips, which is of paramount importance in protein analysis. One section is dedicated to on-line sample pretreatment in microchips and summarizes different strategies to pre-concentrate or to purify proteins from complex matrixes. Most of the common modes used for CE of proteins have already been adapted to the chip format, while multidimensional approaches are still in progress. The different routes to achieve detection in microchip are also presented with a special attention to derivatization or labeling of proteins. Finally, several recent applications are mentioned. They highlight the great potential of electrophoretic separations of proteins in numerous fields such as biological, pharmaceutical or agricultural and food analysis. A bibliography with 151 references is provided covering papers published from 2000 to the early 2007.