New Methodological Approach Towards a Complete Characterization of Structural Fiber Reinforced Concrete by Means of Mechanical Testing Procedures (original) (raw)
Related papers
Fiber reinforced concrete: from flexural tests to solid slabs
Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2019
Tensile behavior of fibre reinforced concrete is assessed based on flexural tests where specifically the post cracking strength values are of interest. However, the residual tensile strength values obtained based on such characterization test exhibit a very high scatter which is mainly due to the variation of number and orientation of fibres at the fracture plane. This rather unrepeatable behavior may cast doubt on the overall performance of a structure reinforced only with fibres and may question the validity of estimated tensile strength parameters that are used in the design of such from one specimen to another structures. While there is evidence that fibre reinforced concrete structures show a behavior that can be predicted by the average material properties, no strong proof is yet available. If so, then the low characteristic value of residual strength values may be a very conservative starting point for design of such structures To validate the reliability of design approach proposed for fibre reinforced concrete structures, twelve nominally identical fibre reinforced concrete slabs sized 2000×2000×150 mm, and twelve notched specimens sized 150×150×600 mm are tested, and the results are compared. Further, a yield line method is employed to predict the ultimate load bearing capacity of the slabs based on the tensile parameters obtained from the characterization tests. The results show that the average material properties can satisfactorily predict the bearing capacity of the slabs. FraMCoS X Conference.
Measurement of Properties of Fiber Reinforced Concrete
ACI Materials Journal, 1988
This report outlines existing procedures for specimen preparation in general and discusses testing, workability, flexural strength, toughness, and energy absorption. Newly developed test methods are presented for the first time for impact strength and flexural toughness. The applicability of the following tests to fiber reinforced concrete
2020
Steel fibre-reinforced concrete (SFRC) is widely applied in the construction of civil infrastructure projects, including the following: industrial floors, slabs, walls, and foundations. The application of steel fibres in the reinforcement of concrete remarkably improves the postcracking behaviour of such concrete. In order to estimate this property, the energy involved in absorption is measured by using several valid testing standards: EVS-EN 14651:2005, EVS-EN 14488-5:2006, and ASTM C1550-12a. The objective of this study was to carry out a comparable analysis of the results that have been obtained using previously-mentioned standards and to be able to find a more reliable method for the determination of the fracture toughness of SFRC specimens. Experiments were carried out in accordance with the chosen standards. It was concluded that procedure involved in the ASTM standard provides a smaller variability of results with better levels of repeatability, therefore a smaller volume of ...
Concrete made with Portland cement has certain characteristics: it is relatively strong in compression but weak in tension and tends to be brittle. These two weaknesses have limited its use. Another fundamental weakness of concrete is that cracks start to form as soon as concrete is placed and before it has properly hardened. These cracks are major cause of weakness in concrete particularly in large on site applications leading to subsequent fracture and failure and general lack of durability. The weakness in tension can be overcome by the use of conventional rod reinforcement and to some extent by the inclusion of a sufficient volume of certain fibers. Fiber reinforced concrete (FRC) may be defined as a composite materials made with Portland cement, aggregate, and incorporating discrete discontinuous fibers. Fiber-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibres that are uniformly distributed and randomly oriented – each of which lend varying properties to the concrete. In addition, the character of fibre-reinforced concrete changes with varying concretes, fibre materials, geometries, distribution, orientation, and densities. In this experimental investigation, an attempt has made to find out strength related tests like Compressive Strength, Split Tensile Strength, Flexural Strength using Pure concrete, steel fibers and Glass Fibers with to volume fraction of 0.0%,0.25%,0.5% , 0.75% and 1% and for aspect ratio and considered for M40 Grade of concrete. The results of the tests showed that the strength properties are enhanced due to addition of glass fibers.
GRD Journals, 2019
Fibers used to enhance the brittleness property of steel reinforced concrete and plain concrete, and modify the tensile strength by increasing work of fracture. Thus, the toughness measurements are valuable for assessing the post crack performance of fiber reinforced concrete (FRC). There are many international standard around the world, but this paper are focuses on review the American standard specifications via exclusive ASTM. The review involve the flexural strength testing methods and toughness testing methods for FRC. For flexural strength test, the ASTM C 78 and ASTM C 293 reviewed and compared between both, while for toughness the ASTM C 1018, ASTM C 1609, ASTM C 1399 and ASTM C 1550 reviewed. This paper also describes concisely the method for each testing and considerable advantages of these methods. Beside, abridged some limitation of these methods. All figures have been redrawn with inserted more details to be most obvious and more rich.
Evaluation of post-cracking behavior of fiber reinforced concrete using indirect tension test
Construction and Building Materials, 2019
h i g h l i g h t s The DEWS test is a reliable instrument for structural parameterization of the FRC. The simplified DEWS test was able to identify the anisotropy of the FRC. The DEWS test was suitable to evaluate synthetic and steel fibers with low content. The susceptibility of the DEWS test to post-peak instability was evaluated.
Experimental Study and Modelling on the Structural Response of Fiber Reinforced Concrete Beams
Applied Sciences
In many structural applications, concretes reinforced with short metal or synthetic fibers (fiber-reinforced concrete (FRC)) have a number of advantages over traditional concretes reinforced with steel rebars reinforcement, such as easier and more economical production, wear resistance, impact resistance, integrity, etc. In the present study, several concrete mixes were developed and prismatic FRC specimens were fabricated. Their structural behaviors were studied using bending tests until prisms were fractured. Two types of fibers, namely, steel and polypropylene (PP) and three different concrete matrixes were investigated, testing in total 12 FRC prismatic specimens. Every group of FRC had the same concrete matrix, but different internal fiber architecture. All specimens were tested by Four-Point Bending (4PBT). The analysis was carried out with a goal to determine the workability and flexural tensile strength of all FRC groups, comparing these parameters with fracture modelling re...
More efficient and industrialised construction methods are both necessary for the competitiveness of in-situ concrete and essential if the construction industry is to move forward. At present, the expenditure on labour (preparation and dismantling of formwork, reinforcing, and casting and finishing of concrete) almost equals the cost of material. Fibre-reinforced concrete (FRC) extends the versatility of concrete as a construction material, offers a potential to simplify the construction process and, when combined with self-compacting concrete, signifies an important step towards industrial construction. However, a barrier to more widespread use of FRC has been the lack of general design guidelines which take into account the material properties characteristic of FRC, i.e. the stress-crack opening (sigma-w) relationship. The presented work has been focused on FRC, showing a strain-softening response, and the interrelationship between material properties and structural behaviour. Thi...