Diphosphoryl Lipid A from Rhodobacter sphaeroides Blocks the Binding and Internalization of Lipopolysaccharide in RAW 264.7 Cells (original) (raw)

Abstract

sparkles

AI

Rhodobacter sphaeroides-derived diphosphoryl lipid A (RsDPLA) is characterized as a novel antagonist to toxic lipopolysaccharide (LPS), serving to block the binding and internalization of LPS in RAW 264.7 macrophage cells. This research shows that RsDPLA can competitively inhibit LPS by binding to LPS binding protein and soluble CD14, as well as obstructing the CD14-dependent and independent pathways that lead to pro-inflammatory signaling. The implications of these findings suggest potential therapeutic applications of RsDPLA in managing sepsis and other LPS-related inflammatory conditions.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (35)

  1. Ulevitch, R. J., and P. Tobias. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13:2091.
  2. Poltorak, A., X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085.
  3. Kirschning, C. J., H. W. Weche, T. M. Ayres, and M. Rothe. 1998. Human Toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188:2091.
  4. Shimazu, R., S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake, and M. Kimoto. 1999. MD-2, a molecule that confers lipopolysaccharide responsive- ness on Toll-like receptor 4. J. Exp. Med. 185:1777.
  5. Bone, R. C., R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein, W. A. Knaus, R. M. H. Schein, and W. J. Sibbald. 1992. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644.
  6. Qureshi, N., J. P. Honovich, H. Hara, R. J. Cotter, and K. Takayama. 1988. Location of fatty acids in lipid A obtained from lipopolysaccharide of Rhodo- pseudomonas sphaeroides ATCC 17023. J. Biol. Chem. 263:5502.
  7. Hirschfeld, M., Y. Ma, J. H. Weis, S. N. Vogel, and J. J. Weis. 2000. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both hu- man and murine Toll-like receptor 2. J. Immunol. 165:618.
  8. Qureshi, N., B. W. Jarvis, and K. Takayama. 1999. Nontoxic RsDPLA as a potent antagonist of toxic lipopolysaccharide. In Endotoxin in Health and Disease, H. Brade, S. M. Opal, S. N. Vogel, and D. C. Morrison, eds. Marcel Dekker, New York, p. 687.
  9. Takayama, K., N. Qureshi, B. Beutler, and T. N. Kirkland. 1989. Diphosphoryl lipid A obtained from Rhodopseudomonas sphaeroides ATCC 17023 blocks in- duction of cachectin in macrophage by lipopolysaccharide. Infect. Immun. 7:1336.
  10. Jarvis, B. W., H. Lichenstein, and N. Qureshi. 1997. Diphosphoryl lipid A from Rhodobacter sphaeroides inhibits complexes that form in vitro between lipopoly- saccharide (LPS)-binding protein, soluble CD14, and spectrally pure LPS. Infect. Immun. 65:3011.
  11. Kirikae, T., F. U. Schade, F. Kirikae, N. Qureshi, K. Takayama, and E. T. Rietschel. 1994. Diphosphoryl lipid A derived from the lipopolysaccharide (LPS) of Rhodobacter sphaeroides ATCC 17023 is a competitive LPS inhibitor in the murine macrophage-like J774.1 cells. FEMS Immunol. Med. Microbiol. 9:237.
  12. Thieblemont, N., R. Thieringer, and S. D. Wright. 1998. Innate immune recog- nition of bacterial lipopolysaccharide: dependence on interactions with mem- brane lipids and endocytic movement. Immunity 8:771.
  13. Fuerst, J. A., and J. W. Perry. 1988. Demonstration of lipopolysaccharide on sheated flagella of Vibrio cholerae O:1 by protein A-gold immunoelectron mi- croscopy. J. Bacteriol. 170:1488.
  14. Kang, Y.-H., R. S. Dwivedi, and Ch.-H. Lee. 1990. Ultrastructural and immu- nocytochemical study of the uptake and distribution of bacterial lipopolysaccha- ride in human monocytes. J. Leukocyte Biol. 48:316.
  15. Kriegsmann, J., S. Gay, and R. Brauer. 1993. Endocytosis of lipopolysaccharide in mouse macrophages. Cell. Mol. Biol. 39:791.
  16. Risco, C., J. L. Carrascosa, and M. A. Bosch. 1993. Visualization of lipopoly- saccharide aggregates by freeze-fracture and negative staining. J. Electron Microsc. Technol. 42:202.
  17. Risco, C., and P. P. DaSilva. 1995. Cellular functions during activation and damage by pathogens: immunogold studies of the interaction of bacterial endo- toxins with target cells. Microsc. Res. Technique 31:141.
  18. Poussin, C., M. Foti, J.-L. Carpentier, and J. Pugin. 1998. CD14-dependent en- dotoxin internalization via macropinocytic pathway. J. Biol. Chem. 273:20285.
  19. Kitchens, R. L., P.-Y. Wang, and R. S. Munford. 1998. Bacterial lipopolysac- charide can enter monocytes via two CD14-dependent pathways. J. Immunol. 161:5534.
  20. Gallay, P., C. V. Jongeneel, C. Barras, M. Burnier, J.-D. Baumgartner, M. P. Glauser, and D. Heumann. 1993. Short time exposure to lipopolysaccharide is sufficient to activate human monocytes. J. Immunol. 150:5086.
  21. Kitchens, R. L., and R. S. Munford. 1998. CD14-dependent internalization of bacterial lipopolysaccharide (LPS) is strongly influenced by LPS aggregation but not by cellular responses to LPS. J. Immunol. 160:1920.
  22. Detmers, P. A., N. Thieblemont, T. Vasselon, R. Pironkova, D. S. Miller, and S. D. Wright. 1996. Potential role of membrane internalization and vesicle fusion in adhesion of neutrophils in response to lipopolysaccharide and TNF. J. Immu- nol. 157:5589.
  23. Albrecht, R. M., S. L. Goodman, and S. R. Simmons. 1989. Distribution and movement of membrane-associated platelet glycoproteins: use of colloidal gold with correlative video-enhanced light microscopy, low-voltage high resolution scanning electron microscopy, and high-voltage transmission electron micros- copy. Am. J. Anat. 185:149.
  24. Albrecht, R. M., S. R. Simmons, and J. B. Pawley. 1993. Correlative videoen- hanced light microscopy, high voltage transmission electron microscopy, and field emission scanning electron microscopy for the localization of colloidal gold labels. In Immunocytochemistry: A Practical Approach, J. E. Beesley, ed. Oxford University Press, New York, p. 151.
  25. Goodman, S. L., K. Park, and R. M. Albrecht. 1991. A correlative approach to colloidal gold labeling with video-enhanced light microscopy, low-voltage scan- ning electron microscopy, and high-voltage electron microscopy. In Colloidal Gold: principles, Methods and Applications, Vol. 3. M. A. Hayat, ed. Academic Press, p. 369.
  26. Qureshi, N., K. Takayama, D. Heller, and C. Fenselau. 1983. Position of ester groups in the lipid A backbone of lipopolysaccharides obtained from Salmonella typhimurium. J. Biol. Chem. 258:12947.
  27. Qureshi, N., K. Takayama, P. Mascagni, J. P. Honovich, R. Wong, and R. J. Cotter. 1988. Complete structural determination of lipopolysaccharide ob- tained from deep rough mutant of Escherichia coli. J. Biol. Chem. 263:11971.
  28. Horisberger, M., and M.-F. Clerc. 1985. Labeling of colloidal gold with protein A: a quantitative study. Histochemistry 82:219.
  29. Bartlett, G. R. 1959. Phosphorous assay in column chromatography. J. Biol. Chem. 234:466.
  30. Albrecht, R. M., and A. P. MacKenzie. 1975. Cultured and free-living cells. In Principles and Techniques of Scanning Electron Microscopy: Biological Appli- cations, Vol. 3. M. A. Hayat, ed. Van Nostrand Reinhold, New York, p. 109.
  31. Rebhun, L. I. 1972. Freeze substitution and freeze drying. In Principles and Techniques of Electron Microscopy: Biological Applications, Vol. 2. M. A. Hayat, ed. Van Nostrand Reinhold, New York, p. 3.
  32. Leeson, M. C., and D. C. Morrison. 1994. Induction of proinflammatory re- sponses in human monocytes by particulate and soluble forms of lipopolysac- charide. Shock 2:235.
  33. Henricson, B. E., J. M. Carboni, A. L. Burkhardt, and S. N. Vogel. 1995. LPS and taxol activate Lyn kinase autophosphorylation in LPS n , but not in LPS d macro- phages. Mol. Med. 1:428.
  34. Yoshida, K., M. Ono, and H. Sawada. 1999. Lipopolysaccharide-induced vacu- oles in macrophages: their origin is plasma membrane-derived organelles and endoplasmic reticulum, but not lysosomes. J. Endotoxin Res. 5:127.
  35. Lien, E., T. K. Means, H. Heine, A. Yoshimura, S. Kusumoto, K. Fukase, M. J. Fenton, M. Oikawa, N. Qureshi, B. Monks, et al. 2000. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. In- vest. 105:497.