Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis (original) (raw)
Related papers
2006
The development of gene array techniques to quantify expression levels of dozens to thousands of genes simultaneously within selected tissue samples from control and diseased brain has enabled researchers to generate expression profiles of vulnerable neuronal populations in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, and Creutzfeld-Jakob disease. Intriguingly, gene expression analysis reveals that vulnerable brain regions in many of these diseases share putative pathogenetic alterations in common classes of genes, including decrements in synaptic transcript levels and increments in immune response transcripts. Thus, gene expression profiles of diseased neuronal populations may reveal mechanistic clues to the molecular pathogenesis underlying various neurological diseases and aid in identifying potential therapeutic targets. This chapter will review how regional and single cell gene array technologies have advanced our understanding of the genetics of human neurological disease.
Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease
The development of gene array techniques to quantify expression levels of dozens to thousands of genes simultaneously within selected tissue samples from control and diseased brain has enabled researchers to generate expression profiles of vulnerable neuronal populations in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, and Creutzfeld-Jakob disease. Intriguingly, gene expression analysis reveals that vulnerable brain regions in many of these diseases share putative pathogenetic alterations in common classes of genes, including decrements in synaptic transcript levels and increments in immune response transcripts. Thus, gene expression profiles of diseased neuronal populations may reveal mechanistic clues to the molecular pathogenesis underlying various neurological diseases and aid in identifying potential therapeutic targets. This chapter will review how regional and single cell gene array technologies have advanced our understanding of the genetics of human neurological disease.
PLOS ONE
Parkinson's disease (PD) is an irreversible and incurable multigenic neurodegenerative disorder. It involves progressive loss of mid brain dopaminergic neurons in the substantia nigra pars compacta (SN). We compared brain gene expression profiles with those from the peripheral blood cells of a separate sample of PD patients to identify disease-associated genes. Here, we demonstrate the use of gene expression profiling of brain and blood for detecting valid targets and identifying early PD biomarkers. Implementing this systematic approach, we discovered putative PD risk genes in brain, delineated biological processes and molecular functions that may be particularly disrupted in PD and also identified several putative PD biomarkers in blood. 20 of the differentially expressed genes in SN were also found to be differentially expressed in the blood. Further application of this methodology to other brain regions and neurological disorders should facilitate the discovery of highly reliable and reproducible candidate risk genes and biomarkers for PD. The identification of valid peripheral biomarkers for PD may ultimately facilitate early identification, intervention, and prevention efforts as well.
Background: Huntington's disease (HD) is a devastating brain disorder with no effective treatment or cure available. The scarcity of brain tissue makes it hard to study changes in the brain and impossible to perform longitudinal studies. However, peripheral pathology in HD suggests that it is possible to study the disease using peripheral tissue as a monitoring tool for disease progression and/or efficacy of novel therapies. In this study, we investigated if blood can be used to monitor disease severity and progression in brain. Since previous attempts using only gene expression proved unsuccessful, we compared blood and brain Huntington's disease signatures in a functional context. Methods: Microarray HD gene expression profiles from three brain regions were compared to the transcriptome of HD blood generated by next generation sequencing. The comparison was performed with a combination of weighted gene co-expression network analysis and literature based functional analysis (Concept Profile Analysis). Uniquely, our comparison of blood and brain datasets was not based on (the very limited) gene overlap but on the similarity between the gene annotations in four different semantic categories: " biological process " , " cellular component " , " molecular function " and " disease or syndrome ". Results: We identified signatures in HD blood reflecting a broad pathophysiological spectrum, including alterations in the immune response, sphingolipid biosynthetic processes, lipid transport, cell signaling, protein modification, spliceosome, RNA splicing, vesicle transport, cell signaling and synaptic transmission. Part of this spectrum was reminiscent of the brain pathology. The HD signatures in caudate nucleus and BA4 exhibited the highest similarity with blood, irrespective of the category of semantic annotations used. BA9 exhibited an intermediate similarity, while cerebellum had the least similarity. We present two signatures that were shared between blood and brain: immune response and spinocerebellar ataxias. Conclusions: Our results demonstrate that HD blood exhibits dysregulation that is similar to brain at a functional level, but not necessarily at the level of individual genes. We report two common signatures that can be used to monitor the pathology in brain of HD patients in a non-invasive manner. Our results are an exemplar of how signals in blood data can be used to represent brain disorders. Our methodology can be used to study disease specific signatures in diseases where heterogeneous tissues are involved in the pathology.
Physiological Genomics, 2008
Brochier C, Gaillard M-C, Diguet E, Caudy N, Dossat C, Ségurens B, Wincker P, Roze E, Caboche J, Hantraye P, Brouillet E, Elalouf J-M, de Chaldée M. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Using serial analysis of gene expression, we collected quantitative transcriptome data in 11 regions of the adult wild-type mouse brain: the orbital, prelimbic, cingulate, motor, somatosensory, and entorhinal cortices, the caudate-putamen, the nucleus accumbens, the thalamus, the substantia nigra, and the ventral tegmental area. With Ͼ1.2 million cDNA tags sequenced, this database is a powerful resource to explore brain functions and disorders. As an illustration, we performed interregional comparisons and found 315 differential transcripts. Most of them are poorly characterized and 20% lack functional annotation. For 78 differential transcripts, we provide independent expression level measurements in mouse brain regions by real-time quantitative RT-PCR. We also show examples where we used in situ hybridization to achieve infrastructural resolution. For 30 transcripts, we next demonstrated that regional enrichment is conserved in the human brain. We then quantified the expression levels of region-enriched transcripts in the R6/2 mouse model of Huntington disease and the 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease and observed significant alterations in the striatum, cerebral cortex, thalamus and substantia nigra of R6/2 mice and in the striatum of MPTP-treated mice. These results show that the gene expression data provided here for the mouse brain can be used to explore pathophysiological models and disclose transcripts differentially expressed in human brain regions. Address for reprint requests and other correspondence: J.-M.
Characterizing the Expression Patterns of Parkinson’s Disease Associated Genes
Frontiers in Neuroscience, 2021
BackgroundThe expression pattern represents a quantitative phenotype that provides an in-depth view of the molecular mechanism in Parkinson’s disease (PD); however, the expression patterns of PD-associated genes (PAGs) and their relation to age at onset (AAO) remain unclear.MethodsThe known PD-causing genes and PD-risk genes, which were collected from latest published authoritative meta-analysis, were integrated as PAGs. The expression data from Genotype-Tissue Expression database, Allen Brian Map database, and BrainSpan database, were extracted to characterize the tissue specificity, inhibitory-excitatory neuron expression profile, and spatio-temporal expression pattern of PAGs, respectively. The AAO information of PD-causing gene was download from Gene4PD and MDSgene database.ResultsWe prioritized 107 PAGs and found that the PAGs were more likely to be expressed in brain-related tissues than non-brain tissues and that more PAGs had higher expression levels in excitatory neurons th...
Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease
The molecular mechanisms underlying the caudal-to-rostral progression of Lewy body pathology in Parkinson’s disease (PD) remain poorly understood. Here, we aimed to unravel transcriptomic signatures across brain regions involved in Braak Lewy body stages in non-neurological controls and PD donors. Using human postmortem brain datasets of non-neurological adults from the Allen Human Brain Atlas, we identified expression patterns related to PD progression, including genes found in PD genome-wide associations studies: SNCA, ZNF184, BAP1, SH3GL2, ELOVL7, and SCARB2. We confirmed these patterns in two datasets of non-neurological subjects (Genotype-Tissue Expression project and UK Brain Expression Consortium) and found altered patterns in two datasets of PD patients. Additionally, co-expression analysis across vulnerable regions identified two modules associated with dopamine synthesis, the motor and immune system, blood-oxygen transport, and contained microglial and endothelial cell mar...