A Genome-wide Association Study Identifies Three Loci Associated with Mean Platelet Volume (original) (raw)
Related papers
Journal of Human Kinetics
The purpose of this study was to investigate individually and in combination the association between the ACE (I/D), NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val) and AMPD1 (Gln45Ter) variants with endurance performance in a large, performance-homogenous cohort of elite Polish half marathoners. The study group consisted of 180 elite half marathoners: 76 with time < 100 minutes and 104 with time > 100 minutes. DNA of the subjects was extracted from buccal cells donated by the runners and genotyping was carried out using an allelic discrimination assay with a C1000 Touch Thermal Cycler (Bio-Rad, Germany) instrument with TaqMan® probes (NOS3, UCP2, and AMPD1) and a T100™ Thermal Cycler (Bio-Rad, Germany) instrument (ACE and BDKRB2). We found that the UCP2 Ala55Val polymorphism was associated with running performance, with the subjects carrying the Val allele being overrepresented in the group of most successful runners (<100 min) compared to the >100 min group (84.2 vs. ...
International Journal of Sports Physiology and Performance, 2021
Purpose: To replicate previous genome-wide association study identified sprint-related polymorphisms in 3 different cohorts of top-level sprinters and to further validate the obtained results in functional studies. Methods: A total of 240 Japanese, 290 Russians, and 593 Brazilians were evaluated in a case-control approach. Of these, 267 were top-level sprint/power athletes. In addition, the relationship between selected polymorphisms and muscle fiber composition was evaluated in 203 Japanese and 287 Finnish individuals. Results: The G allele of the rs3213537 polymorphism was overrepresented in Japanese (odds ratio [OR]: 2.07, P = .024) and Russian (OR: 1.93, P = .027) sprinters compared with endurance athletes and was associated with an increased proportion of fast-twitch muscle fibers in Japanese (P = .02) and Finnish (P = .041) individuals. A meta-analysis of the data from 4 athlete cohorts confirmed that the presence of the G/G genotype rather than the G/A+A/A genotypes increased...
Genomics of Aerobic Capacity and Endurance Performance: Clinical Implications
Many reports of genetic associations with health-related fitness phenotypes have been published over the past decade or so but there has been limited progress in discovering and characterizing the genetic contribution to these phenotypes due to few coordinated research efforts involving major funding initiatives/consortia and the use primarily of the candidate gene approach. Hence, it is timely that exercise genetic research has moved into the genomics era with new approaches that involve well-phenotyped, large cohorts, and genome-wide technologies: such approaches are now known to be required for meaningful progress to be made with reference to clinical significance. This chapter summarizes the most recent and significant findings from exercise genetics and explores future trends and possibilities. KeywordsBody mass index-Coronary artery disease-Genome-wide association study-Knockout-Linkage disequilibrium-Maximal oxygen consumption ( [(V)\dot]O2max \dot{\rm V}{\rm O}_{2}\max )-Od...
Exome-Wide Association Study of Competitive Performance in Elite Athletes
Genes, 2023
The aim of the study was to identify genetic variants associated with personal best scores in Turkish track and field athletes and to compare allelic frequencies between sprint/power and endurance athletes and controls using a whole-exome sequencing (WES) approach, followed by replication studies in independent cohorts. The discovery phase involved 60 elite Turkish athletes (31 sprint/power and 29 endurance) and 20 ethnically matched controls. The replication phase involved 1132 individuals (115 elite Russian sprinters, 373 elite Russian endurance athletes (of which 75 athletes were with VO2max measurements), 209 controls, 148 Russian and 287 Finnish individuals with muscle fiber composition and cross-sectional area (CSA) data). None of the single nucleotide polymorphisms (SNPs) reached an exome-wide significance level (p < 2.3 × 10−7) in genotype–phenotype and case–control studies of Turkish athletes. However, of the 53 nominally (p < 0.05) associated SNPs, four functional variants were replicated. The SIRT1 rs41299232 G allele was significantly over-represented in Turkish (p = 0.047) and Russian (p = 0.018) endurance athletes compared to sprint/power athletes and was associated with increased VO2max (p = 0.037) and a greater proportion of slow-twitch muscle fibers (p = 0.035). The NUP210 rs2280084 A allele was significantly over-represented in Turkish (p = 0.044) and Russian (p = 0.012) endurance athletes compared to sprint/power athletes. The TRPM2 rs1785440 G allele was significantly over-represented in Turkish endurance athletes compared to sprint/power athletes (p = 0.034) and was associated with increased VO2max (p = 0.008). The AGRN rs4074992 C allele was significantly over-represented in Turkish sprint/power athletes compared to endurance athletes (p = 0.037) and was associated with a greater CSA of fast-twitch muscle fibers (p = 0.024). In conclusion, we present the first WES study of athletes showing that this approach can be used to identify novel genetic markers associated with exercise- and sport-related phenotypes.
Gene polymorphisms and elite athletic performance
Journal of anthropological sciences = Rivista di antropologia : JASS / Istituto italiano di antropologia, 2008
Endurance and power performance capacities show much interindividual variation, even among well trained athletes. In the past few years the research was focus on the analysis of the relationship between physiology, biochemistry and genetics in the field of physical exercise, investigating on the inheritance of some traits of performance, on the genetic and molecular basis of training adaptation and on the different indicators of performance.Recently, several studies have shown evidence of the important role of gene polymorphisms in athletic performance. Genetic analysis can be considered a crucial predictive factor only when the gene under scrutiny has a strong influence in a specific physiological pathway or when physiological tests are weakly predictive of adult performance. It is noteworthy that genetic association studies must always be interpreted with caution, for several reasons. It is necessary to verify if the association is attributable to chance or is a false positive res...
The C allele of the AGT Met235Thr polymorphism is associated with power sports performance
Applied Physiology, Nutrition, and Metabolism, 2009
Whether the Met235Thr (rs699) variation in the angiotensinogen (AGT) gene, encoding a threonine instead of a methionine in codon 235 of the mature protein, is associated with athletic performance remains to be elucidated. We compared the genotype and allele frequencies for the AGT Met235Thr variation (rs699) in 119 nonathletic controls, 100 world-class endurance athletes (professional cyclists, Olympic-class runners), and 63 power athletes (top-level jumpers, throwers, sprinters). Participants were all males and from the same descent (Caucasian) for ≥3 generations. The proportion of the CC genotype was significantly higher in the power group (34.9%) than in either the control (16%) or the endurance group (16%) (p = 0.008 and p = 0.005, respectively). The odds ratio (95% CI) of being a power athlete if the subject has a CC genotype was 1.681 (1.176–2.401), compared with the control group. In summary, the C allele of the AGT Met235Thr polymorphism might favour power sports performance...
Genetic Markers Associated with Power Athlete Status
Journal of Human Kinetics
Athletic performance is a multifactorial phenotype influenced by environmental factors as well as multiple genetic variants. Different genetic elements have a great influence over components of athletic performance such as endurance, strength, power, flexibility, neuromuscular coordination, psychological traits and other features important in sport. The current literature review revealed that to date more than 69 genetic markers have been associated with power athlete status. For the purpose of the present review we have assigned all genetic markers described with reference to power athletes status to seven main groups: 1) markers associated with skeletal muscle structure and function, 2) markers involved in the inflammatory and repair reactions in skeletal muscle during and after exercise, 3) markers involved in blood pressure control, 4) markers involved in modulation of oxygen uptake, 5) markers that are regulators of energy metabolism and cellular homeostasis, 6) markers encodin...