Simultaneous Ultraviolet and X‐Ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers (original) (raw)
Related papers
The Astrophysical Journal, 2003
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first 1 Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 9279.
Astrophys J Suppl Ser, 2006
We present a detailed analysis of the intrinsic X-ray absorption in the Seyfert 1 galaxy NGC 4151 using Chandra/HETGS data obtained 2002 May, as part of a program which included simultaneous UV spectra using HST/STIS and FUSE. NGC 4151 was in a relatively low flux state during the observations reported here, although roughly 2.5 times as bright in the 2 --10 keV band as during a Chandra observation in 2000. The soft X-ray band was dominated by emission lines, which show no discernible variation in flux between the two observations. The 2002 data show the presence of a very highly ionized absorber, in the form of H-like and He-like Mg, Si, and S lines, as well as lower ionization gas via the presence of inner-shell absorption lines from lower-ionization species of these elements. The former is too highly ionized to be radiatively accelerated in a sub-Eddington source such as NGC 4151. We find that the lower ionization gas had a column density a factor of ~ 3 higher during the 2000 observation. If due to bulk motion, we estimate that this component must have a velocity of more than 1250 km/sec transverse to our line-of-sight. We suggest that these results are consistent with a magneto-hydrodynamic flow.
The Astrophysical Journal, 2001
We present the results from simultaneous observations of the Narrow-Line Seyfert 1 galaxy NGC 4051 with the Chandra High Energy Transmission Grating Spectrometer and the HST Space Telescope Imaging Spectrograph. The X-ray grating spectrum reveals absorption and emission lines from hydrogen-like and helium-like ions of O, Ne, Mg and Si. We resolve two distinct X-ray absorption systems: a high-velocity blueshifted system at −2340 ± 130 km s −1 and a low-velocity blueshifted system at −600 ± 130 km s −1 . In the UV spectrum we detect strong absorption, mainly from C IV, N V and Si IV, that is resolved into as many as nine different intrinsic absorption systems with velocities between −650 km s −1 and 30 km s −1 . Although the low-velocity X-ray absorption is consistent in velocity with many of the UV absorption systems, the high-velocity X-ray absorption seems to have no UV counterpart. In addition to the absorption and emission lines, we also observe rapid X-ray variability and a state of low X-ray flux during the last ≈ 15 ks of the observation. NGC 4051 has a soft X-ray excess which we fit in both the high and low X-ray flux states. The high-resolution X-ray spectrum directly reveals that the soft excess is not composed of narrow emission lines and that it has significant spectral curvature. A power-law model fails to fit it, while a blackbody produces a nearly acceptable fit. We compare the observed spectral variability with the results of previous studies of NGC 4051.
2001
We present the results from simultaneous observations of the Narrow-Line Seyfert 1 galaxy NGC 4051 with the Chandra High Energy Transmission Grating Spectrometer and the HST Space Telescope Imaging Spectrograph. The X-ray grating spectrum reveals absorption and emission lines from hydrogen-like and helium-like ions of O, Ne, Mg and Si. We resolve two distinct X-ray absorption systems: a high-velocity blueshifted system at -2340+/-130 km/s and a low-velocity blueshifted system at -600+/-130 km/s. In the UV spectrum we detect strong absorption, mainly from C IV, N V and Si IV, that is resolved into as many as nine different intrinsic absorption systems with velocities between -650 km/s and 30 km/s. Although the low-velocity X-ray absorption is consistent in velocity with many of the UV absorption systems, the high-velocity X-ray absorption seems to have no UV counterpart. In addition to the absorption and emission lines, we also observe rapid X-ray variability and a state of low X-ray flux during the last ~15 ks of the observation. NGC 4051 has a soft X-ray excess which we fit in both the high and low X-ray flux states. The high-resolution X-ray spectrum directly reveals that the soft excess is not composed of narrow emission lines and that it has significant spectral curvature. A power-law model fails to fit it, while a blackbody produces a nearly acceptable fit. We compare the observed spectral variability with the results of previous studies of NGC 4051.
Simultaneous X-ray and UV spectroscopy of the Seyfert galaxy NGC�5548
Astronomy and Astrophysics, 2005
We present the results from a 500 ks Chandra observation of the Seyfert 1 galaxy NGC 5548. We detect broadened (full width half maximum = 8000 km s −1 ) emission lines of O VII and C VI in the spectra, similar to those observed in the optical and UV bands. The source was continuously variable, with a 30 % increase in luminosity in the second half of the observation. The gradual increase in luminosity occurred over a timescale of ∼ 300 ks. No variability in the warm absorber was detected between the spectra from the first 170 ks and the second part of the observation. The longer wavelength range of the LETGS resulted in the detection of absorption lines from a broad range of ions, in particular of C, N, O, Ne, Mg, Si, S and Fe. The velocity structure of the X-ray absorber is consistent with the velocity structure measured simultaneously in the ultraviolet spectra. We find that the highest velocity outflow component, at −1040 km s −1 , becomes increasingly important for higher ionization parameters. This velocity component spans at least three orders of magnitude in ionization parameter, producing both highly ionized X-ray absorption lines (Mg XII, Si XIV) as well as UV absorption lines. A similar conclusion is very probable for the other four velocity components. Based upon our observations, we argue that the warm absorber probably does not manifest itself in the form of photoionized clumps in pressure equilibrium with a surrounding wind. Instead, a model with a continuous distribution of column density versus ionization parameter gives an excellent fit to our data. From the shape of this distribution and the assumption that the mass loss through the wind should be smaller than the accretion rate onto the black hole, we derive upper limits to the solid angle as small as 10 −4 sr. From this we argue that the outflow occurs in density-stratified streamers. The density stratification across the stream then produces the wide range of ionization parameter observed in this source. We determine an upper limit of 0.3 M⊙ yr −1 for the mass loss from the galaxy due to the observed outflows.
The Astrophysical Journal, 2005
We present simultaneous X-ray, far-ultraviolet, and near-ultraviolet spectra of the Seyfert 1 galaxy NGC 7469 obtained with the Chandra X-Ray Observatory, the Far Ultraviolet Spectroscopic Explorer, and the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Previous non-simultaneous observations of this galaxy found two distinct UV absorption components, at −560 and −1900 km s −1 , with the former as the likely counterpart of the X-ray absorber.
Simultaneous X-ray and ultraviolet spectroscopy of the Seyfert galaxy NGC�5548
Astronomy and Astrophysics, 2004
The Seyfert 1 galaxy NGC 5548 was observed for a week by Chandra using both the HETGS and LETGS spectrometers. In this paper we study the time variability of the continuum radiation. During our observation, the source showed a gradual increase in flux over four days, followed by a rapid decrease and flattening of the light curve afterwards. Superimposed upon these relatively slow variations several short duration bursts or quasi-periodic oscillations occured with a typical duration of several hours and separation between 0.6-0.9 days. The bursts show a delay of the hard X-rays with respect to the soft X-rays of a few hours. We interprete these bursts as due to a rotating, fluctuating hot spot at approximately 10 gravitational radii; the time delay of the hard X-rays from the bursts agree with the canonical picture of Inverse Compton scattering of the soft accretion disk photons on a hot medium that is relatively close to the central black hole.
Revisiting the Short-Term X-Ray Spectral Variability of NGC 4151 with Chandra
The Astrophysical Journal, 2010
We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ∼200 ks. A significant ACIS pileup is present, resulting in a non-linear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10 −11 erg s −1 cm −2 and 10 −10 erg s −1 cm −2 (L 2−10keV ∼ 1.3 − 2.1 × 10 42 erg s −1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ∼ 0.7 − 0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ∼ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ∼ 1.7, typical for Seyfert 1 AGNs. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short time scale, or variations of partially covering absorber in the line of sight towards the nucleus. An ionized absorber model with ionization parameter log ξ ∼ 0.8 − 1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M BH ∼ 4.6 × 10 7 M ⊙ we constrain the distance of the obscuring cloud from the central black hole to be r 9 light-days, consistent with the size of broad emission line region of NGC 4151 from optical reverberation mapping.
Chandra observations of NGC4698: a Seyfert-2 with no absorption
2003
We present Chandra ACIS-S observations of the enigmatic Seyfert-2 galaxy NGC4698. This object together with several other bona-fide Seyfert-2 galaxies show no absorption in the low spatial resolution ASCA data, in contrast to the standard unification models. Our Chandra observations of NGC4698 probe directly the nucleus allowing us to check whether nearby sources contaminate the ASCA spectrum. Indeed, the Chandra observations show that the ASCA spectrum is dominated by two nearby AGN. The X-ray flux of NGC4698 is dominated by a nuclear source with luminosity L 0.3−8keV ∼ 10 39 erg s −1 , coincident with the radio nucleus. Its spectrum is well represented by a power-law, Γ ≈ 2.2, obscured by a small column density of 5 × 10 20 cm −2 suggesting that NGC4698 is an atypical Seyfert galaxy. On the basis of its low luminosity we then interpret NGC4698 as a Seyfert galaxy which lacks a broad-line region.