Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P (original) (raw)

Innovations of phosphorus sustainability: implications for the whole chain

Frontiers of Agricultural Science and Engineering, 2019

Phosphorus (P) is a non-renewable resource, therefore ensuring global food and environmental security depends upon sustainable P management. To achieve this goal, sustainable P management in the upstream and downstream sectors of agriculture from mineral extraction to food consumption must be addressed systematically. The innovation and feasibility of P sustainability are highlighted from the perspective of the whole P-based chain, including the mining and processing of P rock, production of P fertilizers, soil and rhizosphere processes involving P, absorption and utilization of P by plants, P in livestock production, as well as flow and management of P at the catchment scale. The paper also emphasizes the importance of recycling P and the current challenges of P recovery. Finally, sustainable solutions of holistic P management are proposed from the perspective of technology improvement with policy support.

Peak phosphorus: Implications for agricultural production, the environment and development

Research Papers in Economics, 2010

Phosphorus is a key element in food production, but is a non-renewable resource. Recent estimates suggest that global production of P fertilizers will peak in 2033 and will be one third of that peak level by the end of the 21st century. Population and income growth will increase demand for food, and especially animal protein, the production of which will accelerate the rundown in P reserves and the consequential rise in fertilizer prices. The global distribution of current P fertilizer use divides countries into the ‘haves’ which in many cases face severe pollution problems from excess P, and the ‘have-nots’ in which low input use annually drains soil P reserves. Coping strategies include improvements in the efficiency of fertilizer P manufacture and use, and the recycling of P in liquid and solid wastes. The latter approach offers win-win solutions by reducing the environmental pollution of water in highly populated areas. Future utilisation of scarce P reserves requires policy dec...

Feed the crop not the soil: rethinking phosphorus management in the food chain

Environmental science & technology, 2014

Society relies heavily on inorganic phosphorus (P) compounds throughout its food chain. This dependency is not only very inefficient and increasingly costly but is depleting finite global reserves of rock phosphate. It has also left a legacy of P accumulation in soils, sediments and wastes that is leaking into our surface waters and contributing to widespread eutrophication. We argue for a new, more precise but more challenging paradigm in P fertilizer management that seeks to develop more sustainable food chains that maintain P availability to crops and livestock but with reduced amounts of imported mineral P and improved soil function. This new strategy requires greater public awareness of the environmental consequences of dietary choice, better understanding of soil-plant-animal P dynamics, increased recovery of both used P and unutilized legacy soil P, and new innovative technologies to improve fertilizer P recovery. In combination, they are expected to deliver significant econo...

Phosphorus management in Europe in a changing world

Ambio, 2015

Food production in Europe is dependent on imported phosphorus (P) fertilizers, but P use is inefficient and losses to the environment high. Here, we discuss possible solutions by changes in P management. We argue that not only the use of P fertilizers and P additives in feed could be reduced by fine-tuning fertilization and feeding to actual nutrient requirements, but also P from waste has to be completely recovered and recycled in order to close the P balance of Europe regionally and become less dependent on the availability of P-rock reserves. Finally, climate-smart P management measures are needed, to reduce the expected deterioration of surface water quality resulting from climate-change-induced P loss.

The environmentally-sound management of agricultural phosphorus

Fertilizer Research, 1994

Freshwater eutrophication is often accelerated by increased phosphorus (P) inputs, a greater share of which now come from agricultural nonpoint sources than two decades ago. Maintenance of soil P at levels sufficient for crop needs is an essential part of sustainable agriculture. However, in areas of intensive crop and livestock production in Europe and the U.S.A., P has accumulated in soils to levels that are a long-term eutrophication rather than agronomic concern. Also, changes in land management in Europe and the U.S.A. have increased the potential for P loss in surface runoff and drainage. There is, thus, a need for information on how these factors influence the loss of P in agricultural runoff. The processes controlling the build-up of P in soil, its transport in surface and subsurface drainage in dissolved and particulate forms, and their biological availability in freshwater systems, are discussed in terms of environmentally sound P management. Such management will involve identifying P sources within watersheds; targeting cost-effective remedial measures to minimize P losses; and accounting for different water quality objectives within watersheds. The means by which this can be achieved are identified and include developing soil tests to determine the relative potential for P enrichment of agricultural runoff to occur; establishing threshold soil P levels which are of environmental concern; finding alternative uses for animal manures to decrease land area limitations for application; and adopting management systems integrating measures to reduce P sources as well as runoff and erosion potential.