ColorMapGAN: Unsupervised Domain Adaptation for Semantic Segmentation Using Color Mapping Generative Adversarial Networks (original) (raw)

Data-Efficient Domain Adaptation for Semantic Segmentation of Aerial Imagery Using Generative Adversarial Networks

Applied Sciences

Despite the significant advances noted in semantic segmentation of aerial imagery, a considerable limitation is blocking its adoption in real cases. If we test a segmentation model on a new area that is not included in its initial training set, accuracy will decrease remarkably. This is caused by the domain shift between the new targeted domain and the source domain used to train the model. In this paper, we addressed this challenge and proposed a new algorithm that uses Generative Adversarial Networks (GAN) architecture to minimize the domain shift and increase the ability of the model to work on new targeted domains. The proposed GAN architecture contains two GAN networks. The first GAN network converts the chosen image from the target domain into a semantic label. The second GAN network converts this generated semantic label into an image that belongs to the source domain but conserves the semantic map of the target image. This resulting image will be used by the semantic segment...

Unsupervised Domain Adaptation Using Generative Adversarial Networks for Semantic Segmentation of Aerial Images

Remote Sensing

Segmenting aerial images is of great potential in surveillance and scene understanding of urban areas. It provides a mean for automatic reporting of the different events that happen in inhabited areas. This remarkably promotes public safety and traffic management applications. After the wide adoption of convolutional neural networks methods, the accuracy of semantic segmentation algorithms could easily surpass 80% if a robust dataset is provided. Despite this success, the deployment of a pretrained segmentation model to survey a new city that is not included in the training set significantly decreases accuracy. This is due to the domain shift between the source dataset on which the model is trained and the new target domain of the new city images. In this paper, we address this issue and consider the challenge of domain adaptation in semantic segmentation of aerial images. We designed an algorithm that reduces the domain shift impact using generative adversarial networks (GANs). In ...

Semantic Segmentation of Medium-Resolution Satellite Imagery using Conditional Generative Adversarial Networks

2020

Semantic segmentation of satellite imagery is a common approach to identify patterns and detect changes around the planet. Most of the state-of-the-art semantic segmentation models are trained in a fully supervised way using Convolutional Neural Network (CNN). The generalization property of CNN is poor for satellite imagery because the data can be very diverse in terms of landscape types, image resolutions, and scarcity of labels for different geographies and seasons. Hence, the performance of CNN doesn't translate well to images from unseen regions or seasons. Inspired by Conditional Generative Adversarial Networks (CGAN) based approach of image-to-image translation for high-resolution satellite imagery, we propose a CGAN framework for land cover classification using medium-resolution Sentinel-2 imagery. We find that the CGAN model outperforms the CNN model of similar complexity by a significant margin on an unseen imbalanced test dataset.

Progressively Growing Generative Adversarial Networks for High Resolution Semantic Segmentation of Satellite Images

2018

Machine learning has proven to be useful in classification and segmentation of images. In this paper, we evaluate a training methodology for pixel-wise segmentation on high resolution satellite images using progressive growing of generative adversarial networks. We apply our model to segmenting building rooftops and compare these results to conventional methods for rooftop segmentation. We present our findings using the SpaceNet version 2dataset. Progressive GAN training achieved a test accuracy of 93% compared to 89% for traditional GAN training.

Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks

Sensors

The near-infrared (NIR) spectral range (from 780 to 2500 nm) of the multispectral remote sensing imagery provides vital information for landcover classification, especially concerning vegetation assessment. Despite the usefulness of NIR, it does not always accomplish common RGB. Modern achievements in image processing via deep neural networks make it possible to generate artificial spectral information, for example, to solve the image colorization problem. In this research, we aim to investigate whether this approach can produce not only visually similar images but also an artificial spectral band that can improve the performance of computer vision algorithms for solving remote sensing tasks. We study the use of a generative adversarial network (GAN) approach in the task of the NIR band generation using only RGB channels of high-resolution satellite imagery. We evaluate the impact of a generated channel on the model performance to solve the forest segmentation task. Our results show...

What Is It Like Down There? Generating Dense Ground-Level Views and Image Features From Overhead Imagery Using Conditional Generative Adversarial Networks

ACM SIGSPATIAL, 2018

This paper investigates conditional generative adversarial networks (cGANs) to overcome a fundamental limitation of using geotagged media for geographic discovery, namely its sparse and uneven spatial distribution. We train a cGAN to generate ground-level views of a location given overhead imagery. We show the "fake" ground-level images are natural looking and are structurally similar to the real images. More significantly, we show the generated images are representative of the locations and that the representations learned by the cGANs are informative. In particular, we show that dense feature maps generated using our framework are more effective for land-cover classification than approaches which spatially interpolate features extracted from sparse ground-level images. To our knowledge, ours is the first work to use cGANs to generate ground-level views given overhead imagery and to explore the benefits of the learned representations.