Light-Regulated Plant Growth and Development (original) (raw)
Related papers
Phytochrome-mediated light signaling in plants: emerging trends
Physiology and Molecular Biology of Plants, 2008
Like other living organisms, plant development is also determined genetically but is modulated dramatically by diverse environmental signals. Among these, light plays a profound role and regulates virtually all aspects of plant life cycle, starting from seed germination through to senescence. Plants perceive changes in the ambient light environment by distinct sensory photoreceptors. The conventional photoreceptors include three major classes in plants, viz. the red/far-red (R/FR) light-sensing phytochromes and UV-A/blue light-perceiving cryptochromes and phototropins (Jiao et al., 2007). However, the molecular nature of the UV-B (280-320 nm) photoreceptor(s) is still elusive. Recently, additional blue light photoreceptors called ZEITLUPE have been characterized (
From seed to seed: the role of photoreceptors in Arabidopsis development
Developmental Biology, 2003
As sessile organisms, plants have evolved a multitude of developmental responses to cope with the ever-changing environmental conditions that challenge the plant throughout its life cycle. Of the many environmental cues that regulate plant development, light is probably the most important. From determining the developmental pattern of the emerging seedling, to influencing the organization of organelles to best maximize energy available for photosynthesis, light has dramatic effects on development during all stages of plant life. In plants, three classes of photoreceptors that mediate light perception have been characterized at the molecular level. The phytochromes recognize light in the red portion of the spectrum, while cryptochromes and phototropins perceive blue and UVA light. In this review, we discuss the different aspects of development that are regulated by these photoreceptors in the model plant species Arabidopsis thaliana and how the phytochromes, cryptochromes, and phototropins bring about changes in development seen in the growing plant.
Arabidopsis Contains at Least Four Independent Blue-Light-Activated Signal Transduction Pathways
PLANT PHYSIOLOGY, 1999
sis. The stomatal responses of light-grown mutant plants (cry1, cry2, nph1, nph3, nph4, cry1cry2, and nph1cry1) did not differ significantly from those of their wild-type counterparts. Second positive phototropic responses of etiolated mutant seedlings, cry1, cry2, cry1cry2, and npq1-2, were also similar to those of their wild-type counterparts. Although npq1 and single and double cry1cry2 mutants showed somewhat reduced amplitude for first positive phototropism, threshold, peak, and saturation fluence values for first positive phototropic responses of etiolated seedlings did not differ from those of wild-type seedlings. Similar to the cry1cry2 double mutants and to npq1-2, a phyAphyB mutant showed reduced curvature but no change in the position or shape of the fluenceresponse curve. By contrast, the phototropism mutant nph1-5 failed to show phototropic curvature under any of the irradiation conditions used in the present study. We conclude that the chromoproteins cry1, cry2, nph1, and the blue-light photoreceptor for the stomatal response are genetically separable. Moreover, these photoreceptors appear to activate separate signal transduction pathways.
Photoreceptors and Control of Horticultural Plant Traits
HortScience, 2015
Plant productivity and product quality ultimately are dependent on an interaction between genetics and environment, and one of the most important environmental cues is light. Light quantity, quality, and duration provide critical information to plants that mediate growth and development. Light signal transduction is dependent on a series of photoreceptors and their associated signaling pathways that direct intracellular processes that lead to changes in gene expression that ultimately affect plant form, function, and content. For the last several decades, scientists have dissected these signaling pathways and understand how they connect the environment to a response. The advent of narrow-bandwidth illumination in commercial lighting invites the opportunity to manipulate plant behavior and productivity through precise alteration of the ambient spectrum. This review describes the biochemical links that convert incident light into predictable changes in plant growth and development. Th...
Physiologia plantarum, 2018
We studied how plants acclimated to growing conditions that included combinations of blue light and ultraviolet-A (UV-A) radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue-light-and-UV photoreceptors: phototropin 1PHOT1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using LED lamps in a controlled environment to create treatments with or without blue light, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 minutes of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (φPSII a proxy for photosynthetic performance) and dark-adapted maximum quantum...
The Plant Journal, 1997
et al., 1995a; Malhotra et al.,1995), and overexpression of USA CRY1 protein in transgenic plants conferred a blue-light hypersensitive phenotype (Lin et al.,1995b), consistent with its role as photoreceptor. Blue-light-dependent phenotypes Summary shown to be under the control of CRY1 include inhibition Blue-light responses in higher plants are mediated by of hypocotyl elongation and anthocyanin production in specific photoreceptors, which are thought to be flavoseedlings (Ahmad et al., 1995; Jackson and Jenkins, 1995; proteins; one such flavin-type blue-light receptor, CRY1 Koornneef et al., 1980). In spite of its striking homology to (for cryptochrome), which mediates inhibition of hypocotyl the DNA photolyases, CRY1 shows no demonstrable DNA elongation and anthocyanin biosynthesis, has recently binding or photoreactivating activity (Lin et al., 1995a; been characterized. Prompted by classical photobiological Malhotra et al., 1995). The structure of CRY1 suggests a studies suggesting possible co-action of the red/far-red mechanism of action involving electron transfer; the reacabsorbing photoreceptor phytochrome with blue-light tion partners and downstream transduction apparatus photoreceptors in certain plant species, the role of phytoremain to be identified. chrome in CRY1 action in Arabidopsis was investigated. A recurring theme in plant blue-light research has been The activity of the CRY1 photoreceptor can be substantially an involvement of the red/far-red-absorbing photoreceptor altered by manipulating the levels of active phytochrome phytochrome in physiological responses to blue-light treat-(Pfr) with red or far-red light pulses subsequent to bluements. Experiments in a number of monocot and dicot light treatments. Furthermore, analysis of severely phytoplant species have shown that blue-light responses such chrome-deficient mutants showed that CRY1-mediated as inhibition of hypocotyl elongation or anthocyanin accublue-light responses were considerably reduced, even mulation can be partially reversed if the blue-light pulses though Western blots confirmed that levels of CRY1 photoare followed by, or given in the presence of, saturating receptor are unaffected in these phytochrome-deficient pulses of far-red light (Casal, 1994; Gaba et al., 1984; mutant backgrounds. It was concluded that CRY1-medi-Mancinelli et al., 1991; Mohr, 1994). Such far-red reversiated inhibition of hypocotyl elongation and anthocyanin bility had been taken as evidence that phytochrome, or the production requires active phytochrome for full expresphytochrome signal transduction pathway, was somehow sion, and that this requirement can be supplied by low implicated in blue-light responses. However, interpretation levels of either phyA or phyB. of these studies has been complicated by the fact that the phytochrome photoreceptor itself directly absorbs blue light. It is therefore difficult to unequivocally distinguish
Sensing the light environment in plants: photoreceptors and early signaling steps
Current Opinion in Neurobiology, 2015
Plants must constantly adapt to a changing light environment in order to optimize energy conversion through the process of photosynthesis and to limit photodamage. In addition, plants use light cues for timing of key developmental transitions such as initiation of reproduction (transition to flowering). Plants are equipped with a battery of photoreceptors enabling them to sense a very broad light spectrum spanning from UV-B to far-red wavelength (280-750 nm). In this review we briefly describe the different families of plant photosensory receptors and the mechanisms by which they transduce environmental information to influence numerous aspects of plant growth and development throughout their life cycle.
Arabidopsis Contains at Least Four Independent Blue-Light-Activated Signal Transduction Pathways1
Plant Physiology, 1999
We have investigated the stomatal and phototropic responses to blue light of a number of single and double mutants at various loci that encode proteins involved in blue-light responses in Arabidopsis. The stomatal responses of light-grown mutant plants (cry1, cry2, nph1, nph3, nph4, cry1cry2, andnph1cry1) did not differ significantly from those of their wild-type counterparts. Second positive phototropic responses of etiolated mutant seedlings, cry1, cry2, cry1cry2, andnpq1-2, were also similar to those of their wild-type counterparts. Although npq1 and single and double cry1cry2 mutants showed somewhat reduced amplitude for first positive phototropism, threshold, peak, and saturation fluence values for first positive phototropic responses of etiolated seedlings did not differ from those of wild-type seedlings. Similar to the cry1cry2 double mutants and tonpq1-2, a phyAphyB mutant showed reduced curvature but no change in the position or shape of the fluence-response curve. By contr...