Elucidation of the roles of tumor integrin ß1 in the extravasation stage of the metastasis cascade (original) (raw)

Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function

Proceedings of the National Academy of Sciences, 2012

Entry of tumor cells into the blood stream is a critical step in cancer metastasis. Although significant progress has been made in visualizing tumor cell motility in vivo, the underlying mechanism of cancer cell intravasation remains largely unknown. We developed a microfluidic-based assay to recreate the tumor-vascular interface in three-dimensions, allowing for high resolution, real-time imaging, and precise quantification of endothelial barrier function. Studies are aimed at testing the hypothesis that carcinoma cell intravasation is regulated by biochemical factors from the interacting cells and cellular interactions with macrophages. We developed a method to measure spatially resolved endothelial permeability and show that signaling with macrophages via secretion of tumor necrosis factor alpha results in endothelial barrier impairment. Under these conditions intravasation rates were increased as validated with live imaging. To further investigate tumor-endothelial (TC-EC) signaling, we used highly invasive fibrosarcoma cells and quantified tumor cell migration dynamics and TC-EC interactions under control and perturbed (with tumor necrosis factor alpha) barrier conditions. We found that endothelial barrier impairment was associated with a higher number and faster dynamics of TC-EC interactions, in agreement with our carcinoma intravasation results. Taken together our results provide evidence that the endothelium poses a barrier to tumor cell intravasation that can be regulated by factors present in the tumor microenvironment.

In vitro models of the metastatic cascade: from local invasion to extravasation

Drug Discovery Today, 2013

A crucial event in the metastatic cascade is the extravasation of circulating cancer cells from blood capillaries to the surrounding tissues. The past 5 years have been characterized by a significant evolution in the development of in vitro extravasation models, which moved from traditional transmigration chambers to more sophisticated microfluidic devices, enabling the study of complex cell-cell and cell-matrix interactions in multicellular, controlled environments. These advanced assays could be applied to screen easily and rapidly a broad spectrum of molecules inhibiting cancer cell endothelial adhesion and extravasation, thus contributing to the design of more focused in vivo tests. Keywords extravasation; cancer; in vitro; microfluidics; drug The past four decades were characterized by promising successes in cancer treatment and detection, through the development of devices reducing surgical invasiveness or enabling early diagnosis, and the discovery of drugs blocking primary tumor progression, thus reducing cancer mortality and improving life quality for patients with terminal disease [1].

The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform

bioRxiv (Cold Spring Harbor Laboratory), 2020

Throughout the process of metastatic dissemination, tumor cells are continuously subjected to mechanical forces resulting from complex fluid flows due to changes in pressures in their local microenvironments. While these forces have been associated with invasive phenotypes in 3D matrices, their role in key steps of the metastatic cascade, namely extravasation and subsequent interstitial migration, remains poorly understood. In this study, an in vitro model of the human microvasculature was employed to subject tumor cells to physiological luminal, trans-endothelial, and interstitial flows to evaluate their effects on those key steps of metastasis. Luminal flow promoted the extravasation potential of tumor cells, possibly as a result of their increased intravascular migration speed. Trans-endothelial flow increased the speed with which tumor cells transmigrated across the endothelium as well as their migration speed in the matrix following extravasation. In addition, tumor cells possessed a greater propensity to migrate in close proximity to the endothelium when subjected to physiological flows, which may promote the successful formation of metastatic foci. These results show important roles of fluid flow during extravasation and invasion, which could determine the local metastatic potential of tumor cells.

Mechanisms of tumor cell extravasation in an in vitro microvascular network platform

Integrative biology : quantitative biosciences from nano to macro, 2013

A deeper understanding of the mechanisms of tumor cell extravasation is essential in creating therapies that target this crucial step in cancer metastasis. Here, we use a microfluidic platform to study tumor cell extravasation from in vitro microvascular networks formed via vasculogenesis. We demonstrate tight endothelial cell-cell junctions, basement membrane deposition and physiological values of vessel permeability. Employing our assay, we demonstrate impaired endothelial barrier function and increased extravasation efficiency with inflammatory cytokine stimulation, as well as positive correlations between the metastatic potentials of MDA-MB-231, HT-1080, MCF-10A and their extravasation capabilities. High-resolution time-lapse microscopy reveals the highly dynamic nature of extravasation events, beginning with thin tumor cell protrusions across the endothelium followed by extrusion of the remainder of the cell body through the formation of small (~1 μm) openings in the endothelia...

A critical step in metastasis: in vivo analysis of intravasation at the primary tumor

Cancer research, 2000

Detailed evaluation of all steps in tumor cell metastasis is critical for evaluating the cell mechanisms controlling metastasis. Using green fluorescent protein transfectants of metastatic (MTLn3) and nonmetastatic (MTC) cell lines derived from the rat mammary adenocarcinoma 13762 NF, we have measured tumor cell density in the blood, individual tumor cells in the lungs, and lung metastases. Correlation of blood burden with lung metastases indicates that entry into the circulation is a critical step for metastasis. To examine cell behavior during intravasation, we have used green fluorescent protein technology to view these cells in time lapse images within a single optical section using a confocal microscope. In vivo imaging of the primary tumors of MTLn3 and MTC cells indicates that both metastatic and nonmetastatic cells are motile and show protrusive activity. However, metastatic cells show greater orientation toward blood vessels and larger numbers of host cells within the prima...

Microfluidic device for studying tumor cell extravasation in cancer metastasis

2010 Biomedical Sciences and Engineering Conference, 2010

Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer's progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body. Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.

A three-dimensional in vitro model of tumor cell intravasation

Integrative biology : quantitative biosciences from nano to macro, 2014

Metastasis is the cause of over 90% of all human cancer deaths. Early steps in the metastatic process include: the formation of new blood vessels, the initiation of epithelial-mesenchymal transition (EMT), and the mobilization of tumor cells into the circulation. There are ongoing efforts to replicate the physiological landscape of human tumor tissue using three-dimensional in vitro culture models; however, few systems are able to capture the full range of authentic, complex in vivo events such as neovascularization and intravasation. Here we introduce the Prevascularized Tumor (PVT) model to investigate early events of solid tumor progression. PVT spheroids are composed of endothelial and tumor cells, and are embedded in a fibrin matrix containing fibroblasts. The PVT model facilitates two mechanisms of vessel formation: robust sprouting angiogenesis into the matrix, and contiguous vascularization within the spheroid. Furthermore, the PVT model enables the intravasation of tumor ce...

A microfluidic platform for modeling metastatic cancer cell matrix invasion

Biofabrication, 2017

Invasion of the extracellular matrix is a critical step in the colonization of metastatic tumors. The invasion process is thought to be driven by both chemokine signaling and interactions between invading cancer cells and physical components of the metastatic niche, including endothelial cells that line capillary walls and serve as a barrier to both diffusion and invasion of the underlying tissue. Transwell chambers, a tool for generating artificial chemokine gradients to induce cell migration, have facilitated recent work to investigate the chemokine contributions to matrix invasion. These chambers, however, are poorly designed for imaging, which limits their use in investigating the physical cell-cell and cell-matrix interactions driving matrix invasion. Microfluidic devices offer a promising model in which the invasion process can be imaged. Many current designs, however, have limited surface areas and possess intricate geometries that preclude the use of standard staining protoc...

Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement

Proceedings of The National Academy of Sciences, 2009

Three-dimensional culture alters cancer cell signaling; however, the underlying mechanisms and importance of these changes on tumor vascularization remain unclear. A hydrogel system was used to examine the role of the transition from 2D to 3D culture, with and without integrin engagement, on cancer cell angiogenic capability. Threedimensional culture recreated tumor microenvironmental cues and led to enhanced interleukin 8 (IL-8) secretion that depended on integrin engagement with adhesion peptides coupled to the polymer. In contrast, vascular endothelial growth factor (VEGF) secretion was unaffected by 3D culture with or without substrate adhesion.

On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics

Nature Protocols, 2017

Distant metastasis, which results in >90% of cancer related deaths, is enabled by hematogenous dissemination of tumor cells via the circulation. This requires the completion of a sequence of complex steps including transit, initial arrest, extravasation, survival and proliferation. Increased understanding of the cellular and molecular players enabling each of these steps is key in uncovering new opportunities for therapeutic intervention during early metastatic dissemination. Here, we describe an in vitro model of the human microcirculation with the potential to recapitulate discrete steps of early metastatic seeding, including arrest, transendothelial migration and early micrometastases formation. The microdevice features self-organized human microvascular networks formed over 4-5 days, after which tumor can be perfused and extravasation events easily tracked over 72 hours, via standard confocal microscopy. Contrary to most in vivo and in vitro extravasation assays, robust and rapid scoring of extravascular cells combined with high-resolution imaging can be easily achieved due to the confinement of the vascular network to one plane close to the surface of the device. This renders extravascular cells clearly distinct and allows tumor cells of interest to be identified quickly compared to those in thick tissues. The ability to generate large numbers of devices (~36) per experiment coupled with fast quantitation further allows for highly parametric studies, which is required when testing multiple genetic or pharmacological perturbations. This is coupled with the capability for live tracking of single cell extravasation events allowing both tumor and endothelial morphological