PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects (original) (raw)
Related papers
Will PI3K pathway inhibitors be effective as single agents in patients with cancer?
Oncotarget, 2011
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis regulates essential cellular functions including cell survival, proliferation, metabolism, migration, and angiogenesis. The PI3K pathway is activated in human cancers by mutation, amplification, and deletion of genes encoding components of this pathway. The critical role of PI3K in cancer has led to the development of drugs targeting the effector mechanisms of this signaling network. Recent studies have shown that inhibition at multiple levels of the PI3K pathway results in FOXO-dependent feedback reactivation of several receptor tyrosine kinases (RTKs) which, in turn, limit the sustained inhibition of this pathway and attenuates the action of therapeutic antagonists. This suggests that if used as single agents, PI3K pathway inhibitors may have limited clinical activity. We propose herein that to successfully target the output of the PI3K pathway in cancer cells, combination therapies that hinder these compensatory mechanisms should be used. Thus, combination therapies that target RTKs, PI3K, and mTOR activities may be required to maximize the clinical benefit derived from treatment with these inhibitors.
PI3 kinase inhibitors in the clinic: an update
Anticancer research, 2012
The phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway has been identified as a key signaling pathway for important cellular functions such as growth control, metabolism and translation initiation. Several proteins within this pathway are valuable anticancer drug targets, among which several inhibitors of mTOR are now administered in routine practice. A better understanding of the structure and functions of PI3K has led to the development of novel inhibitors that have a more favorable toxicity profile as compared to the first generation of anti-PI3K drugs. In this article, we review the basics of PI3K biology and focus on its inhibitors, currently under investigation in clinical trials. The perspective for future directions in the setting of PI3K inhibition and novel trials is also discussed.
Cancer Discovery, 2019
The PI3K pathway is mutated and aberrantly activated in many cancers and plays a central role in tumor cell proliferation and survival, making it a rational therapeutic target. Until recently, however, results from clinical trials with PI3K inhibitors in solid tumors have been largely disappointing. Here, we describe several factors that have limited the success of these agents, including the weak driver oncogenic activity of mutant PI3K, suboptimal patient selection in trials, drug-related toxicities, feedback upregulation of compensatory mechanisms when PI3K is blocked, increased insulin production upon PI3Kα inhibition, lack of mutant-specific inhibitors, and a relative scarcity of studies using combinations with PI3K antagonists. We also suggest strategies to improve the impact of these agents in solid tumors. Despite these challenges, we are optimistic that isoform-specific PI3K inhibitors, particularly in combination with other agents, may be valuable in treating appropriately...
Challenges in the clinical development of PI3K inhibitors
Annals of the New York Academy of Sciences, 2013
The PI3K/Akt/mTOR pathway is one of the most frequently dysregulated signaling pathways in cancer and an important target for drug development. PI3K signaling plays a fundamental role in tumorigenesis, governing cell proliferation, survival, motility, and angiogenesis. Activation of the pathway is frequently observed in a variety of tumor types and can occur through several mechanisms. These mechanisms include (but are not limited to) upregulated signaling via the aberrant activation of receptors upstream of PI3K, amplification or gain-of-function mutations in the PIK3CA gene encoding the p110␣ catalytic subunit of PI3K, and inactivation of PTEN through mutation, deletion, or epigenetic silencing. PI3K pathway activation may occur as part of primary tumorigenesis, or as an adaptive response (via molecular alterations or increased phosphorylation of pathway components) that may lead to resistance to anticancer therapies. A range of PI3K inhibitors are being investigated for the treatment of different types of cancer; broad clinical development plans require a flexible yet well-structured approach to clinical trial design.
PI3K inhibitors as new cancer therapeutics: implications for clinical trial design
OncoTargets and Therapy, 2016
The PI3K-AKT-mTOR pathway is frequently activated in cancer. PI3K inhibitors, including the pan-PI3K inhibitor buparlisib (BKM120) and the PI3Kα-selective inhibitor alpelisib (BYL719), currently in clinical development by Novartis Oncology, may therefore be effective as anticancer agents. Early clinical studies with PI3K inhibitors have demonstrated preliminary antitumor activity and acceptable safety profiles. However, a number of unanswered questions regarding PI3K inhibition in cancer remain, including: what is the best approach for different tumor types, and which biomarkers will accurately identify the patient populations most likely to benefit from specific PI3K inhibitors? This review summarizes the strategies being employed by Novartis Oncology to help maximize the benefits of clinical studies with buparlisib and alpelisib, including stratification according to PI3K pathway activation status, selective enrollment/target enrichment (where patients with PI3K pathway-activated tumors are specifically recruited), nonselective enrollment with mandatory tissue collection, and enrollment of patients who have progressed on previous targeted agents, such as mTOR inhibitors or endocrine therapy. An overview of Novartis-sponsored and Novartis-supported trials that are utilizing these approaches in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme, is also described.
PI3K Pathway Inhibitors: Better Not Left Alone
The PI3K/Akt/mTOR signaling pathway plays a key role in diverse physiologic processes. It is also central to many aspects of the malignant process. Genetic phenomena that lead to constitutive pathway activation are common in human cancer; the most relevant are mutations affecting the catalytic subunit of PI3K and loss of function of the PTEN tumor suppressor. These factors have made this important cascade attractive as a potential target for cancer therapeutics. A host of inhibitors are now in various stages of development that target key nodes within the PI3K pathway. To date, however, the efficacy of these agents has fallen short of expectation, with at least one possible explanation being the presence of feedback loops and cross-talk that exists within and between PI3K and other signaling pathways. Accordingly, enthusiasm is again high as strategies employing therapeutic combinations are gaining pace, with encouraging results documented in both preclinical studies and emerging clinical trials. Here, we review the agents that have reached evaluation in early phase clinical studies of human subjects with cancer, and discuss the rationale for and use of novel drug combinations.
Status of PI3K inhibition and biomarker development in cancer therapeutics
Annals of …, 2010
The phosphatidylinositol 3-kinase (PI3K) signalling pathway is integral to diverse cellular functions, including cellular proliferation, differentiation and survival. The 'phosphate and tensin homologue deleted from chromosome 10' (PTEN) tumor suppressor gene plays a critical role as a negative regulator of this pathway. An array of genetic mutations and amplifications has been described affecting key components of this pathway, with implications not only for tumorigenesis but also for resistance to some classic cytotoxics and targeted agents. Emerging preclinical research has significantly advanced our understanding of the PI3K pathway and its complex machinations and interactions. This knowledge has enabled the evolution of rationally designed drugs targeting elements of this pathway. It is important that the development of suitable biomarkers continues in parallel to optimize use of these agents. A new generation of PI3K inhibitors is now entering early clinical trials, with much anticipation that they will add to the growing armamentarium of targeted cancer therapeutics.
Journal of Cancer and Biomedical Research, 2019
The PI3K signaling pathway is involved in the regulation of cancer cell growth, motility, survival and metabolism. This pathway is frequently active in many different types of cancer as breast, prostate and multiple myeloma. Targetable genetic aberrations in this pathway give the researchers many opportunities for the development of targeted therapies for different types of cancer. The high frequency of mutations in this pathway in multiple types of cancer has led to the development of smallmolecule inhibitors of PI3K, several of which are currently in clinical trials. However, several feedback mechanisms either within the PI3K pathway or in compensatory pathways can render tumor cells resistant to therapy. Here, we give insight into the importance of the PI3K pathway as a target for cancer therapy and discuss the potential clinical efficacy of PI3K inhibitors. We mainly focused on the roles of PI3K signaling pathway in three cancer cell types including breast cancer, prostate cancer and multiple myeloma cancer.
Therapeutic Potency of PI3K Pharmacological Inhibitors of Gastrointestinal Cancer
Middle East Journal of Digestive Diseases, 2018
Therapeutic targeting of phosphatidyl-inositol 3-kinase (PI3K) is considered as a possible strategy in several types of cancer, including gastrointestinal ones. In vitro and in vivo studies indicated the significance of proapoptotic and antiproliferative inhibition of PI3K. Although there are many phase 1 and 2 clinical trials on PI3K inhibitors in patients with gastrointestinal cancer, the molecular mechanism of PI3K targeting PI3K/ mTOR pathway is not clear. Panclass I, isoformselective, and dual PI3K/mTOR inhibitors are under investigation. This review aimed to indicate PI3K-dependent targeting mechanisms in gastrointestinal cancer and the evaluation of related clinical data.