No evidence for the role of somatic mutations and promoter hypermethylation of FH gene in the tumorigenesis of nonsyndromic uterine leiomyomas (original) (raw)

Epigenetic and genetic landscape of uterine leiomyomas: a current view over a common gynecological disease

Archives of Gynecology and Obstetrics

Purpose: Despite the numerous studies on the factors involved in the genesis and growth of uterine leiomyomas, the pathogenesis of these tumors remains unknown. Intrinsic abnormalities of the myometrium, abnormal myometrial receptors for estrogen, and hormonal changes or altered responses to ischemic damage during the menstrual period may be responsible for the initiation of (epi)genetic changes found in these tumors. Considering these elements, we aimed to offer an overview about epigenetic and genetic landscape of uterine leiomyomas. Methods: Narrative overview, synthesizing the findings of literature retrieved from searches of computerized databases. Results: Several studies showed that leiomyomas have a monoclonal origin. Accumulating evidence converges on the risk factors and mechanisms of tumorigenesis: the transloca-tion t (12;14) and deletion of 7q were found in the highest percentages of recurrence; dysregulation of the HMGA2 gene has been mapped within the critical 12q14–q15 locus. Estrogen and progesterone are recognized as promoters of tumor growth, and the potential role of environmental estrogens has been poorly explored. The growth factors with mitogenic activity, such as transforming growth factor-β3, fibroblast growth factor, epidermal growth factor, and insulin like growth factor-I are elevated in fibroids and may have a role as effectors of the tumor promotion. Conclusion: The new clues on genetics and Depigenetics, as well as about the growth factors that control normal and pathological myometrial cellular biology may be of great help for the development of new effective and less invasive therapeutic strategies in the near future.

Genetic heterogeneity among uterine leiomyomata: insights into malignant progression

Human Molecular Genetics, 2007

Uterine leiomyomata (UL), also known as fibroids, are the most common pelvic tumors in women of reproductive age and are the primary indication for hysterectomy in the USA. Many lines of evidence indicate a strong genetic component to the development of these tumors. In fact, 40% of UL have non-random, tumorspecific chromosome abnormalities which have allowed classification into well-defined subgroups (deletion of portions of 7q, trisomy 12 or rearrangements of 12q15, 6p21 or 10q22) as well as identification of candidate genes for UL predisposition. Although benign, UL have been linked to malignancy through two genomic regions on chromosome 1. Mutation of fumarate hydratase (FH) at 1q43 is known to cause the Mendelian syndromes of multiple cutaneous and uterine leiomyomata (MCL) and hereditary leiomyomatosis and renal cell cancer (HLRCC), and recently, FH mutations have been detected in some non-syndromic UL. In addition, transcriptional profiling suggests that loss of the short arm of chromosome 1 in cellular leiomyomata, an uncommon histological variant of UL, may account in part for the presumed yet rare malignant transformation of UL to uterine leiomyosarcoma.

Involvement of fumarate hydratase in nonsyndromic uterine leiomyomas: Genetic linkage analysis and FISH studies

Genes, Chromosomes and Cancer, 2004

Recently, germline mutations of the fumarate hydratase (FH) gene, in 1q42.1, have been found to be involved in syndromes associated with uterine leiomyomas (ULs). Compelling evidence also supports a genetic liability to develop nonsyndromic UL, although susceptibility genes have not been reported to date. Loss of heterozygosity (LOH) studies have found no or rare evidence of LOH of FH in nonsyndromic UL. However, the karyotypes of these tumors were not reported, and cytogenetic aberrations of 1q42-44 have been observed infrequently in UL. To determine whether FH mutations also may predispose women to developing nonsyndromic UL, we performed a genetic linkage study with DNA from 123 families containing at least one affected sister pair. In addition, to assess the frequency of FH loss specifically in UL with 1q rearrangements, we performed a fluorescence in situ hybridization (FISH) analysis of UL with 1q rearrangements. Analysis of the genotyping data revealed evidence suggestive of linkage to the FH region among study participants who were less than 40 years of age at diagnosis (Zlr 1.7 at D1S547, P ϭ 0.04). FISH results showed that one copy of FH was absent in 9 of 11 ULs. These data indicate that loss of FH might be a significant event in the pathogenesis of a subset of nonsyndromic ULs.

Low frequency of somatic mutations in the FH/multiple cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas

British Journal of Cancer, 2002

Germline mutations in the fumarate hydratase gene at 1q43 predispose to dominantly inherited skin and uterine leiomyomata and leiomyosarcomas. The enzyme, which is a component of the tricarboxylic acid cycle, acts as a tumour suppressor. To evaluate fumarate hydratase in respective sporadic tumours, we analysed a series of 26 leiomyosarcomas and 129 uterine leiomyomas (from 21 patients) for somatic mutations in fumarate hydratase and allelic imbalance around 1q43. None of the 26 leiomyosarcomas harboured somatic mutations in fumarate hydratase. Fifty per cent of leiomysarcomas tested showed evidence of allelic imbalance at 1q, but this was not confined to the vicinity of fumarate hydratase. Only 5% (seven out of 129) of the leiomyomas showed allele imbalance at 1q42-q43 and no somatic mutations in fumarate hydratase were observed. Our findings indicate that mutations in fumarate hydratase do not play a major role in the development of sporadic leiomyosarcomas or uterine leiomyomas.

Genetics of uterine leiomyomata

Genes, Chromosomes and Cancer, 2000

Leiomyomata represent the most common gynecologic tumors in women of reproductive age and are the primary indication for hysterectomy in the United States. Cytogenetic and genetic studies have in recent years advanced our understanding of the etiology of these tumors. Cytogenetic aberrations involving chromosomes 6, 7, 12, and 14 constitute the major chromosomal abnormalities seen in leiomyomata and have led to the discovery that disruptions or dysregulations of HMGIC and HMGIY contribute to the development of these tumors. Based on the finding of a variety of other consistent chromosomal aberrations detected in these tumors, other genes with fundamental roles in the pathobiology of uterine leiomyomata await identification.

Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer

Nature Genetics, 2002

Uterine leiomyomata (fibroids) are common and clinically important tumors, but little is known about their etiology and pathogenesis 1-3 . We previously mapped a gene that predisposes to multiple fibroids, cutaneous leiomyomata and renal cell carcinoma to chromosome 1q42.3-q43 (refs 4-6). Here we show, through a combination of mapping critical recombinants, identifying individuals with germline mutations and screening known and predicted transcripts, that this gene encodes fumarate hydratase, an enzyme of the tricarboxylic acid cycle. Leiomyomatosis-associated mutations are predicted to result in absent or truncated protein, or substitutions or deletions of highly conserved amino acids. Activity of fumarate hydratase is reduced in lymphoblastoid cells from individuals with leiomyomatosis. This enzyme acts as a tumor suppressor in familial leiomyomata, and its measured activity is very low or absent in tumors from individuals with leiomyomatosis. Mutations in FH also occur in the recessive condition fumarate hydratase deficiency 7-11 , and some parents of people with this condition are susceptible to leiomyomata. Thus, heterozygous and homozygous or compound heterozygous mutants have very different clinical phenotypes. Our results provide clues to the pathogenesis of fibroids and emphasize the importance of mutations of housekeeping and mitochondrial proteins in the pathogenesis of common types of tumor 12-14 .

Strong family history of uterine leiomyomatosis warrants fumarate hydratase mutation screening

Human Reproduction, 2012

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome characterized by cutaneous and uterine leiomyomas and renal cell cancer. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. A Finnish family with nine closely related women with uterine leiomyomas was detected by an alert gynecologist. No cutaneous or renal cell tumors were reported in the family when it was referred to genetic analyses. Samples were available from seven patients, and a novel germline FH mutation was detected in five of them. Mutation carriers were symptomatic, had multiple tumors and were diagnosed at an early age. This study emphasizes the importance of considering FH mutation screening when gynecologists encounter families with multiple severe uterine leiomyoma cases. Due to possibility of phenocopies more than one patient should be tested. Early mutation detection allows regular screening of the mutation carriers and enables early detection of possible highly aggressive renal tumors. It may also affect family planning as multiple myomas at early age may significantly reduce fertility.

Different methylation levels in the KLF4, ATF3 and DLEC1 genes in the myometrium and in corpus uteri mesenchymal tumours as assessed by MS-HRM

Pathology Research and Practice, 2019

Mesenchymal tumours of the corpus uteri comprise common benign lesionsleiomyomas and very rare malignant variantssarcomas. It can be difficult to distinguish between the particular types of mesenchymal tumours pre-surgically. Primarily, leiomyomas and the very aggressive leiomyosarcomas can be easily misdiagnosed when using only imaging devices. Therefore, a reliable non-invasive marker for these tumour types would provide greater certitude for patients that the lesion remains benign. Our collection comprises 76 native leiomyomas, an equal number of healthy myometrium samples and 49 FFPE samples of various types of sarcomas. The methylation level was assessed by MS-HRM method and we observed differences in the methylation level between healthy, benign and (semi)malignant tissues in the KLF4 and DLEC1 genes. The mean methylation levels of leiomyomas compared to myometrium and leiomyosarcomas were 70.7% vs. 6.5% vs. 39.6 % (KLF4) and 66.1% vs. 14.08% vs. 37.5% (DLEC1). The ATF3 gene was differentially methylated in leiomyomatous and myometrial tissues with 98.1% compared to 76.6%. The AUC values of the predictive logistic regression model for discrimination between leiomyomas and leiomyosarcomas based on methylation levels were 0.7829 (KLF4) and 0.7719 (DLEC1). Finally, our results suggest that there should be distinct models for the methylation events in benign leiomyomas and sarcomas, and that the KLF4 and DLEC1 genes can be considered potential methylation biomarkers for uterine leiomyomas.

The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development

Reproductive Sciences, 2015

Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and teneleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17b-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.

Expanded Somatic Mutation Spectrum of MED12 Gene in Uterine Leiomyomas of Saudi Arabian Women

Frontiers in Genetics

MED12, a subunit of mediator complex genes is known to harbor genetic mutations, (mostly in exon 2), causal to the genesis of uterine leiomyomas among Caucasian, African American, and Asian women. However, the precise relationship between genetic mutations vs. protein or disease phenotype is not well-explained. Therefore, we sought to replicate the MED12 mutation frequency in leiomyomas of Saudi Arabian women, who represents ethnically and culturally distinct population. We performed molecular screening of MED12 gene (in 308 chromosomes belonging to 154 uterine biopsies), analyzed the genotype-disease phenotype correlations and determined the biophysical characteristics of mutated protein through diverse computational approaches. We discovered that >44% (34/77) leiomyomas of Arab women carry a spectrum of MED12 mutations (30 missense, 1 splice site, and 3 indels). In addition to known codon 44, we observed novel somatic mutations in codons 36, 38, and 55. Most genetically mutated tumors (27/30; 90%) demonstrated only one type of genetic change, highlighting that even single allele change in MED12 can have profound impact in transforming the normal uterine myometrium to leiomyomas. An interesting inverse correlation between tumor size and LH is observed when tumor is positive to MED12 mutation (p < 0.05). Our computational investigations suggest that amino acid substitution mutations in exon-2 region of MED12 might contribute to potential alterations in phenotype as well as the stability of MED12 protein. Our study, being the first one from Arab world, confirms the previous findings that somatic MED12 mutations are critical to development and progression of uterine leiomyomas irrespective of the ethnic background. We recommend that mutation screening, particularly codon 44 of MED12 can assist in molecular diagnostics of uterine leiomyomas in majority of the patients.