Canonical Coset Parameterization and the Bures Metric of the Three-level Quantum Systems (original) (raw)

Abstract

An explicit parameterization for the state space of an nnn-level density matrix is given. The parameterization is based on the canonical coset decomposition of unitary matrices. We also compute, explicitly, the Bures metric tensor over the state space of two- and three-level quantum systems.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (36)

  1. D. J. C. Bures, Trans. Am. Math. Phys. 135, 199 (1969).
  2. S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
  3. D. Petz and C. Sudár, J. Math. Phys. 37, 2662 (1996).
  4. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
  5. R. Jozsa, J. Mod. Opt. 41, 2315 (1994).
  6. M. Hübner, Phys. Lett. A 163, 239 (1992).
  7. J. Dittmann, Sem. Sophus Lie 3, 73 (1993).
  8. J. Dittmann, J. Phys. A: Math. Gen. 32, 2663 (1999).
  9. M. J. W. Hall, Phys. Lett. A 242, 123 (1998).
  10. K. Życzkowski, P. Horodecki, A. Sanpera and M. Lewenstein, J. Phys. Rev. A 58, 883 (1998).
  11. K. Życzkowski, Phys. Rev. A 60, 3496 (1999).
  12. H-J Sommers and K. Życzkowski, J. Phys. A: Math. Gen. 36, 10083 (2003).
  13. P. B. Slater, Quantum Inf. Process. 1, 387 (2002).
  14. P. B. Slater, J. Geom. Phys. 53, 74 (2005).
  15. P. B. Slater, J. Opt. B: Quantum Semiclass. Opt. 5, S651 (2003).
  16. P. B. Slater, Phys. Rev. A 71, 052319 (2005).
  17. P. B. Slater, e-print quant-ph/0609006.
  18. F. J. Bloore, J. Phys. A: Math. Gen. 9, 2059 (1976).
  19. U. Fano, Rev. Mod. Phys. 29, 74 (1957).
  20. G. Kimura, Phys. Lett. A 314, 339 (2003).
  21. M. S. Byrd and N. Khaneja, Phys. Rev. A 68, 062322 (2003).
  22. G. Kimura and A. Kossakowski, Open Sys. Information Dyn. 12, 207 (2005). J. Phys. A: Math. Gen. 32, 2663 (1999).
  23. L. J. Boya, M. Byrd, M. Mims and E. C. G. Sudarshan, quant-ph/9810084
  24. M. S. Byrd, J. Math. Phys. 39, 6125 (1998), ibid 41, 1026 (2000) Erratum.
  25. M. S. Byrd and P. Slater, Phys. Lett. A 283, 152 (2001).
  26. T. Tilma, M. Byrd and E. C. G. Sudarshan, J. Phys. A: Math. Gen. 35, 10445 (2002).
  27. T. Tilma and E. C. G. Sudarshan, J. Phys. A: Math. Gen. 35, 10467 (2002).
  28. T. Tilma and E. C. G. Sudarshan, J. Geom. Phys. 52, 263 (2004).
  29. T. Tilma and E. C. G. Sudarshan, J Phys. Soc. Jpn. 72, Suppl. C, 185 (2003).
  30. K. Życzkowski and W. S lomczyński, J. Phys. A: Math. Gen. 34, 6689 (2001).
  31. P. Dit ¸ǎ, J. Phys. A: Math. Gen. 38, 2657 (2005).
  32. P. Dit ¸ǎ, J. Phys. A: Math. Gen. 36, 1 (2003).
  33. S. J. Akhtarshenas and M. A. Jafarizadeh, Quantum Inf. Comput. 3, 229 (2003).
  34. W. K. Wootters, Phys. Rev. Lett. 80 2245 (1998).
  35. P. Slater, J. Geom. Phys. 39, 207 (2001).
  36. R. Gilmore, "Lie Groups, Lie Algebras, and Some of Their Applications", John-Wiley Publishing Co., (1974).