Monocarboxylate transporters in the central nervous system: distribution, regulation and function (original) (raw)
Related papers
Monocarboxylate transporter expression in mouse brain
American Journal of Physiology-Endocrinology and Metabolism, 1998
Although glucose is the major metabolic fuel needed for normal brain function, monocarboxylic acids, i.e., lactate, pyruvate, and ketone bodies, can also be utilized by the brain as alternative energy substrates. In most mammalian cells, these substrates are transported either into or out of the cell by a family of monocarboxylate transporters (MCTs), first cloned and sequenced in the hamster. We have recently cloned two MCT isoforms (MCT1 and MCT2) from a mouse kidney cDNA library. Northern blot analysis revealed that MCT1 mRNA is ubiquitous and can be detected in most tissues at a relatively constant level. MCT2 expression is more limited, with high levels of expression confined to testes, kidney, stomach, and liver and lower levels in lung, brain, and epididymal fat. Both MCT1 mRNA and MCT2 mRNA are detected in mouse brain using antisense riboprobes and in situ hybridization. MCT1 mRNA is found throughout the cortex, with higher levels of hybridization in hippocampus and cerebell...
Neuroscience, 2003
Monocarboxylate transporters (MCTs) play an important role in the metabolism of all cells. They mediate the transport of lactate and pyruvate but also some other substrates such as ketone bodies. It has been proposed that glial cells release monocarboxylates to fuel neighbouring neurons. A key element in this hypothesis is the existence of neuronal MCTs. Amongst the three MCTs known to be expressed in the brain (MCT1, 2 and 4) only MCT2 has been found in neurons. Here we have studied the expression pattern of MCT2 during postnatal development. By use of immunoperoxidase and double immunofluorescence microscopy we report that neuronal MCT2 occurs in most brain areas, including the hippocampus and cerebellum, from birth to adult. MCT2 is also expressed in specific subpopulations of astrocytes. Neuronal MCT2 is most abundant in the first 3 postnatal weeks and thereafter decreases toward adulthood. In contrast to MCT2, MCT4 is exclusively present in astroglia during all stages of development. Furthermore, MCT4 expression is very low at birth and reaches adult level by P14. Our results are consistent with previous data suggesting that in the immature brain much of the energy demand is met by monocarboxylates and ketone bodies.
Neuroscience, 2000
ÐRecent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of speci®c transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using speci®c antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immuno¯uorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial ®brillary acidic protein and monocarboxylate transporters, although many glial ®brillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100b protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial ®brillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.
MCT2 is a Major Neuronal Monocarboxylate Transporter in the Adult Mouse Brain
Journal of Cerebral Blood Flow & Metabolism, 2002
Although previous Northern blot and in situ hybridization studies suggested that neurons express the monocarboxylate transporter MCT2, subsequent immunohistochemical analyzes either failed to confirm the presence of this transporter or revealed only a low density of immunolabeled neuronal processes in vivo. The authors report that appropriate section pretreatment (brief warming episode or proteinase K exposure) leads to extensive labeling of the neuropil, which appears as tiny puncta throughout the whole mouse brain. In addition, intense MCT2 immunoreactivity was found in cerebellar Purkinje cell bodies and their processes, on mossy fibers in the cerebellum, and on sensory fibers in the brainstem. Double immunofluorescent labeling with appropriate markers and observation with epifluorescence and confocal microscopy did not show extensive colocalization of MCT2 immunoreactivity with presynaptic or postsynaptic elements, but colocalization could be observed occasionally in the cortex ...
Expression of the monocarboxylate transporter MCT1 in the adult human brain cortex
Brain Research, 2006
Distribution of the monocarboxylate transporter MCT1 has been investigated in the cortex of normal adult human brain. Similarly to the glucose transporter GLUT1 55 kDa isoform, MCT1 was found to be strongly expressed on blood vessels in all cortical layers. In addition, laminar analysis revealed intense MCT1 expression in the neuropil of layer IV in primary auditory (AI) and visual (VI) areas, while this expression was more homogeneous in the non-primary auditory area STA. The cellular distribution shows that MCT1 is strongly expressed by glial cells often associated with blood vessels that were identified as astrocytes. The observed distribution of MCT1 supports the concept that, under certain circumstances, monocarboxylates could be provided as energy substrates to the adult human brain. Moreover, the distinct laminar pattern of MCT1 expression between primary and non-primary cortical areas may reflect different types of neuronal activity requiring adequate supply of specific energy substrates.
Neurochemical research, 2002
An efficient exchange of lactate between different cell types (such as astrocytes and neurones) would require that lactate transporters are expressed in contiguous parts of the respective plasma membranes. To settle this issue we explored the subcellular expression pattern of monocarboxylate transporters (MCTs) by use of selective antibodies and high resolution immunogold cytochemistry. We investigated whether the membrane domains containing MCT1, MCT2 and MCT4 are spatially related to each other and to other membrane domains, i.e. those containing glutamate receptors. We used retina and cerebellum as a model for our investigations. We found that MCT1 was localized in the apical membrane of pigment epithelial cells and in the photoreceptor inner segment membrane in the retina. In the brain MCT1 was present in endothelial cells. MCT2 was localized in the postsynaptic membrane of parallel fiber-Purkinje cell synapses and MCT4 was situated in the membrane of glial cells in the cerebellum.
Journal of Neuroscience Research, 2003
Evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. Such a process implies the presence of specific monocarboxylate transporters on both cell types. Expression of MCT1 and MCT2, two isoforms of the monocarboxylate transporter (MCT) family, was studied in enriched cultures of mouse cortical astrocytes or neurons. It was observed that, at both the mRNA and the protein levels, astrocytes strongly expressed MCT1 but had very little if any MCT2. By contrast, neurons had high amounts of MCT2 mRNA, although MCT1 mRNA was also detected. Double immunofluorescent labelings with appropriate markers confirmed the cell-specific preference in the expression of MCT1 and MCT2, but they revealed that a subset of neurons expresses low to moderate levels of MCT1. Parallel immunocytochemical stainings of cultured neurons with the presynaptic marker synaptophysin showed that MCT2 expression is correlated with synaptic development. Although MCT2 and synaptophysin were not colocalized, their distribution was similar, and they were often closely apposed, suggesting that MCT2 could be associated with postsynaptic terminals. Interaction between astrocytes and neurons, as occurring in layered cultures, did not modify the levels of MCT1 and MCT2 expression or their distribution and cell-specific preference under the conditions used. However, a close apposition between neurites and MCT1-expressing astrocytic processes was apparent and developed as cultures evolved. In addition to providing an extensive description of MCT distribution in cultured cells, our data underscore the potential of such preparations for future studies on the regulation of MCT expression.
Monocarboxylate transporters in the brain and in cancer
Biochimica et biophysica acta, 2016
Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells a...
Proceedings of the …, 1998
Under particular circumstances like lactation and fasting, the blood-borne monocarboxylates acetoacetate, -hydroxybutyrate, and lactate represent significant energy substrates for the brain. Their utilization is dependent on a transport system present on both endothelial cells forming the blood-brain barrier and on intraparenchymal brain cells. Recently, two monocarboxylate transporters, MCT1 and MCT2, have been cloned. We report here the characterization by Northern blot analysis and by in situ hybridization of the expression of MCT1 and MCT2 mRNAs in the mouse brain. In adults, both transporter mRNAs are highly expressed in the cortex, the hippocampus and the cerebellum. During development, a peak in the expression of both transporters occurs around postnatal day 15, declining rapidly by 30 days at levels observed in adults. Double-labeling experiments reveal that the expression of MCT1 mRNA in endothelial cells is highest at postnatal day 15 and is not detectable at adult stages. These results support the notion that monocarboxylates are important energy substrates for the brain at early postnatal stages and are consistent with the sharp decrease in blood-borne monocarboxylate utilization after weaning. In addition, the observation of a sustained intraparenchymal expression of monocarboxylate transporter mRNAs in adults, in face of the seemingly complete disappearance of their expression on endothelial cells, reinforces the view that an intercellular exchange of lactate occurs within the adult brain.
Journal of Biological Chemistry, 1997
The transport of lactate is an essential part of the concept of metabolic coupling between neurons and glia. Lactate transport in primary cultures of astroglial cells was shown to be mediated by a single saturable transport system with a K m value for lactate of 7.7 mM and a V max value of 250 nmol/(min ؋ mg of protein). Transport was inhibited by a variety of monocarboxylates and by compounds known to inhibit monocarboxylate transport in other cell types, such as ␣-cyano-4hydroxycinnamate and p-chloromercurbenzenesulfonate. Using reverse transcriptase-polymerase chain reaction and Northern blotting, the presence of mRNA coding for the monocarboxylate transporter 1 (MCT1) was demonstrated in primary cultures of astroglial cells. In contrast, neuron-rich primary cultures were found to contain the mRNA coding for the monocarboxylate transporter 2 (MCT2). MCT1 was cloned and expressed in Xenopus laevis oocytes. Comparison of lactate transport in MCT1 expressing oocytes with lactate transport in glial cells revealed that MCT1 can account for all characteristics of lactate transport in glial cells. These data provide further molecular support for the existence of a lactate shuttle between astrocytes and neurons.