Effect of Human Corneal Mesenchymal Stromal Cell-derived Exosomes on Corneal Epithelial Wound Healing (original) (raw)

Unravelling Novel Roles of Salivary Exosomes in the Regulation of Human Corneal Stromal Cell Migration and Wound Healing

International Journal of Molecular Sciences

Salivary exosomes have demonstrated vast therapeutic and diagnostic potential in numerous diseases. This study pioneers previously unexplored roles of SE in the context of corneal wound healing by utilizing primary corneal stromal cells from healthy (HCFs), type I diabetes mellitus (T1DMs), type II DM (T2DMs), and keratoconus (HKCs) subjects. Purified, healthy human SEs carrying tetraspanins CD9+, CD63+, and CD81+ were utilized. Scratch and cell migration assays were performed after 0, 6, 12, 24, and 48 h following SE stimulation (5 and 25 µg/mL). Significantly slower wound closure was observed at 6 and 12 h in HCFs with 5 μg/mL SE and T1DMs with 5 and 25 μg/mL SE. All wounds were closed by 24-hour, post-wounding. HKCs, T1DMs, and T2DMs with 25µg/mL SE exhibited a significant upregulation of cleaved vimentin compared to controls. Thrombospondin 1 was significantly upregulated in HCFs, HKCs, and T2DMs with 25 µg/mL SE. Lastly, HKCs, T1DMs, and T2DMs exhibited a significant downregula...

Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis

International Journal of Molecular Sciences

Bone marrow-derived mesenchymal stromal cells (MSCs) are major players in regenerative therapies for wound healing via their paracrine activity, mediated partially by exosomes. Our purpose was to test if MSC-derived exosomes could accelerate wound healing by enhancing the biological properties of the main cell types involved in the key phases of this process. Thus, the effects of exosomes on (i) macrophage activation, (ii) angiogenesis, (iii) keratinocytes and dermal fibroblasts proliferation and migration, and (iv) the capacity of myofibroblasts to regulate the turnover of the extracellular matrix were evaluated. The results showed that, although exosomes did not exhibit anti-inflammatory properties, they stimulated angiogenesis. Exposure of keratinocytes and dermal (myo)fibroblasts to exosomes enhanced their proliferation and migratory capacity. Additionally, exosomes prevented the upregulation of gene expression for type I and III collagen, α-smooth muscle actin, and MMP2 and 14,...

Mini Review: Current Trends and Understanding of Exosome Therapeutic Potential in Corneal Diseases

Frontiers in Pharmacology, 2021

Exosomes are a subset of extracellular vesicles (EVs) that are secreted by most cell types. They are nanosized EVs ranging from 30 to 150 nm. The membrane-enclosed bodies originate by the process of endocytosis and mainly comprise DNA, RNA, protein, and lipids. Exosomes not only act as cell-to-cell communication signaling mediators but also have the potential to act as biomarkers for clinical application and as a promising carrier for drug delivery. Unfortunately, the purification methods for exosomes remain an obstacle. While most of the exosome researches are mainly focused on cancer, there are limited studies highlighting the importance of exosomes in ocular biology, specifically cornea-associated pathologies. Here, we summarize a brief description of exosome biogenesis, roles of exosomes and exosome-based therapies in corneal pathologies, and exosome bioengineering for tissue-specific therapy.

Mesenchymal stromal cells derived exosomes as tools for chronic wound healing therapy

Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie, 2018

In modern society, the healing of chronic wounds is still a major cause of discomfort for the patients and a financial burden for the care system. Current approaches use either organic tissue-engineered skin substitutes or stem cells based therapy. It has been shown that mesenchymal stem cells (MSCs) are able to improve the wound healing process by secreting factors with anti-inflammatory, anti-fibrotic and pro-angiogenic activities either as soluble molecules (growth factors, cytokines) or encapsulated within membrane vesicles (microparticles, exosomes). It has been shown that exosomes, the small membrane vesicles originating from the endocytic pathway, are the main mediators of MSCs paracrine effect. Their complex cargo (mRNA, microRNA and various anti-apoptotic and pro-angiogenic factors) has been found to induce migration and proliferation of fibroblasts as well as collagen synthesis. Thus, the combination of MSCs derived exosomes and organic biomaterials in order to enhance the...

Current Trends and Future Perspective of Mesenchymal Stem Cells and Exosomes in Corneal Diseases

International Journal of Molecular Sciences

The corneal functions (transparency, refractivity and mechanical strength) deteriorate in many corneal diseases but can be restored after corneal transplantation (penetrating and lamellar keratoplasties). However, the global shortage of transplantable donor corneas remains significant and patients are subject to life-long risk of immune response and graft rejection. Various studies have shown the differentiation of multipotent mesenchymal stem cells (MSCs) into various corneal cell types. With the unique properties of immunomodulation, anti-angiogenesis and anti-inflammation, they offer the advantages in corneal reconstruction. These effects are widely mediated by MSC differentiation and paracrine signaling via exosomes. Besides the cell-free nature of exosomes in circumventing the problems of cell-fate control and tumorigenesis, the vesicle content can be genetically modified for optimal therapeutic affinity. The pharmacology and toxicology, xeno-free processing with sustained deli...

Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Corneal Wound Repair by Regulating Inflammation and Angiogenesis

Cells

Severe corneal damage leads to complete vision loss, thereby affecting life quality and impinging heavily on the healthcare system. Current clinical approaches to manage corneal wounds suffer from severe drawbacks, thus requiring the development of alternative strategies. Of late, mesenchymal stromal/stem cell (MSC)-derived extracellular vesicles (EVs) have become a promising tool in the ophthalmic field. In the present study, we topically delivered bone-marrow-derived MSC-EVs (BMSC-EVs), embedded in methylcellulose, in a murine model of alkali-burn-induced corneal damage in order to evaluate their role in corneal repair through histological and molecular analyses, with the support of magnetic resonance imaging. Our data show that BMSC-EVs, used for the first time in this specific formulation on the damaged cornea, modulate cell death, inflammation and angiogenetic programs in the injured tissue, thus leading to a faster recovery of corneal damage. These results were confirmed on ca...

Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration

Burns & Trauma

Abstact Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-e...

Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition

Frontiers in Molecular Biosciences, 2020

Exosomes are nano-scale and closed membrane vesicles which are promising for therapeutic applications due to exosome-enclosed therapeutic molecules such as DNA, small RNAs, proteins and lipids. Recently, it has been demonstrated that mesenchymal stem cell (MSC)-derived exosomes have capacity to regulate many biological events associated with wound healing process, such as cell proliferation, cell migration and blood vessel formation. This study investigated the regenerative potentials for cutaneous tissue, in regard to growth factors associated with wound healing and skin cell proliferation and migration, by exosomes released from primary MSCs originated from bone marrow (BM), adipose tissue (AD), and umbilical cord (UC) under serum-and xeno-free condition. We found crucial wound healing-mediated growth factors, such as vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), hepatocyte growth factor (HGF), and platelet-derived growth factor BB (PDGF-BB) in exosomes derived from all three MSC sources. However, expression levels of these growth factors in exosomes were influenced by MSC origins, especially transforming growth factor beta (TGF-β) was only detected in UCMSC-derived exosomes. All exosomes released by three MSCs sources induced keratinocyte and fibroblast proliferation and migration; and, the induction of cell migration is a dependent manner with the higher dose of exosomes was used (20 µg), the faster migration rate was observed. Additionally, the influences of exosomes on cell proliferation and migration was associated with exosome origins and also target cells of exosomes that the greatest induction of primary dermal fibroblasts belongs to BMMSC-derived exosomes Hoang et al. Mesenchymal Stem Cell-Derived Exosomes and keratinocytes belongs to UCMSC-derived exosomes. Data from this study indicated that BMMSCs and UCMSCs under clinical condition secreted exosomes are promising to develop into therapeutic products for wound healing treatment.

MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy

Stem Cell Research & Therapy

Currently, mesenchymal stem/stromal stem cell (MSC) therapy has become a promising option for accelerating cutaneous wound healing. In vivo reports have outlined the robust competences of MSCs to offer a solid milieu by inhibition of inflammatory reactions, which in turn, enables skin regeneration. Further, due to their great potential to stimulate angiogenesis and also facilitate matrix remodeling, MSCs hold substantial potential as future therapeutic strategies in this context. The MSCs-induced wound healing is thought to mainly rely on the secretion of a myriad of paracrine factors in addition to their direct differentiation to skin-resident cells. Besides, MSCs-derived exosomes as nanoscale and closed membrane vesicles have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of MSCs. The MSCs-derived exosomes comprise molecular components including lipid, proteins, DNA, microRNA, an...

Oral cavity-derived exosomes as promising tool in chronic wound healing

Medical Journal of Cell Biology, 2019

Wound healing is an important physiological process aimed at maintaining the integrity of the skin after injury, accidentally or intentionally. Physiological wound healing involves three consecutive but overlapping phases, including hemostasis, proliferation and remodeling. Wound healing abnormalities, such as excessive wound healing (e.g. keloid) or chronic wounds (e.g. ulcers) impair normal physiological function. Many experimental studies have provided insight into wound healing. There are numerous methods that support wound healing, including popular hydrogels, vegetable oils, ultrasound and even treatment with maggots. Stem cell therapies are also very popular, but they are not safe in all cases due to having specific antibodies. In the following article, in addition to a brief overview of current healing therapies we will examine exosomal therapy, which, although new, seems to be very promising if only because of the high safety of use. Running title: Exosomes in wound healing