The role of initial magnetic field structure in the launching of protostellar jets (original) (raw)

High‐ and Low‐Velocity Magnetized Outflows in the Star Formation Process in a Gravitationally Collapsing Cloud

The Astrophysical Journal, 2008

The driving mechanisms of low-and high-velocity outflows in star formation processes are studied using threedimensional resistive MHD simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate cloud evolution from the molecular cloud core (n c ¼ 10 4 cm À3 ) to the stellar core (n c ¼ 10 22 cm À3 ), where n c denotes the central density. In the collapsing cloud core, we found two distinct flows: low-velocity flows ($5 km s À1 ) with a wide opening angle, driven from the adiabatic core when the central density exceeds n c k 10 12 cm À3 ; and high-velocity flows ($30 km s À1 ) with good collimation, driven from the protostar when the central density exceeds n c k 10 21 cm À3 . High-velocity flows are enclosed by low-velocity flows after protostar formation. The difference in the degree of collimation between the two flows is caused by the strength of the magnetic field and configuration of the magnetic field lines. The magnetic field around an adiabatic core is strong and has an hourglass configuration; therefore, flows from the adiabatic core are driven mainly by the magnetocentrifugal mechanism and guided by the hourglass-like field lines. In contrast, the magnetic field around the protostar is weak and has a straight configuration owing to ohmic dissipation in the high-density gas region. Therefore, flows from the protostar are driven mainly by the magnetic pressure gradient force and guided by straight field lines. Differing depth of the gravitational potential between the adiabatic core and the protostar causes the difference of flow speed. Low-velocity flows may correspond to the observed molecular outflows, while high-velocity flows may correspond to the observed optical jets. We suggest that the protostellar outflow and the jet are driven by different cores, rather than the outflow being entrained by the jet.

On the Influence of Magnetic Fields on the Structure of Protostellar Jets

The Astrophysical Journal, 2001

We here present the first results of fully three-dimensional (3-D) MHD simulations of radiative cooling pulsed (time-variable) jets for a set of parameters which are suitable for protostellar outflows. Considering different initial magnetic field topologies in approximate equipartition with the thermal gas, i.e., (i) a longitudinal, and (ii) a helical field, both of which permeating the jet and the ambient medium; and (iii) a purely toroidal field permeating only the jet, we find that the overall morphology of the pulsed jet is not very much affected by the presence of the different magnetic field geometries in comparison to a nonmagnetic calculation. Instead, the magnetic fields tend to affect essentially the detailed structure and emission properties behind the shocks at the head and at the pulse-induced internal knots, particularly for the helical and toroidal geometries. In these cases, we find, for example, that the H α emissivity behind the internal knots can be about three to four times larger than that of the purely hydrodynamical jet. We also find that some features, like the nose cones that often develop at the jet head in 2-D calculations involving toroidal magnetic fields, are smoothed out or absent in the 3-D calculations.

Magnetic Field Effects on the Head Structure of Protostellar Jets

The Astrophysical Journal, 1997

We present the results of three-dimensional smooth particle magnetohydrodynamics numerical simulations of supermagnetosonic, overdense, radiatively cooling jets. Together with a baseline non-magnetic calculation, two initial magnetic configurations (in ∼ equipartition with the gas) are considered:

Driving Mechanism of Jets and Outflows in Star Formation Process

2007

The driving mechanism of jets and outflows in star formation process is studied using resistive MHD nested grid simulations. We calculated cloud evolution from the molecular cloud core to the stellar core. In the collapsing cloud core, we found two distinct flows: Low-velocity flows (sim 5 km/s) with a wide opening angle, driven from the adiabatic core, and high-velocity flows (sim 30 km/s) with good collimation, driven from the protostar. High-velocity flows are enclosed by low-velocity flows after protostar formation. The difference in the degree of collimation between the two flows is caused by the strength of the magnetic field and configuration of the magnetic field lines. The magnetic field around an adiabatic core is strong and has an hourglass configuration; therefore, flows from the adiabatic core are driven mainly by the magnetocentrifugal mechanism and guided by the hourglass-like field lines. In contrast, the magnetic field around the protostar is weak and has a straight configuration owing to Ohmic dissipation in the high-density gas region. Therefore, flows from the protostar are driven mainly by the magnetic pressure gradient force and guided by straight field lines. Differing depth of the gravitational potential between the adiabatic core and the protostar cause the difference of the flow speed. Low-velocity flows correspond to the observed molecular outflows, while high-velocity flows correspond to the observed optical jets. We suggest that the outflow and the jet are driven by different cores, rather than that the outflow being entrained by the jet.

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field

Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations.The laboratory plasma becomes focused with an interior cavity.This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale,we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154.

Two-component magnetohydrodynamical outflows around young stellar objects

Astronomy and Astrophysics, 2006

Context. We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar magnetospheric winds coupled with discdriven jets where the resistive and viscous accretion disc is self-consistently described. Aims. These innovative MHD simulations are devoted to the study of the interplay between a stellar wind (having different ejection mass rates) and an MHD disc-driven jet embedding the stellar wind. Methods. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. We first investigate the various angular momentum transports occurring in the magneto-viscous accretion disc. We then analyze the modifications induced by the interaction between the two components of the outflow. Results. Our simulations show that the inner outflow is accelerated from the central object's hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. Conclusions. The simulations show that the MHD disc-driven outflow extracts angular momentum more efficiently than do viscous effects in near-equipartition, thin-magnetized discs where turbulence is fully developed. We also show that, when a dense inner stellar wind occurs, the resulting disc-driven jet has a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass-ejection rate in the disc-driven jet and a larger radial extension that is in better agreement with the observations, besides being more consistent.

MAGNETIC FLUX EXPULSION IN STAR FORMATION

The Astrophysical Journal, 2011

Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known "magnetic flux problem" demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in 3D, using an MHD version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically, along the path of least resistance. It drives a lowdensity expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in 3D MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

The Role of Magnetic Fields in Protostellar Outflows and Star Formation

Frontiers in Astronomy and Space Sciences

The role of outflows in the formation of stars and the protostellar disks that generate them is a central question in astrophysics. Outflows are associated with star formation across the entire stellar mass spectrum. In this review, we describe the observational, theoretical, and computational advances on magnetized outflows, and their role in the formation of disks and stars of all masses in turbulent, magnetized clouds. The ability of torques exerted on disks by magnetized winds to efficiently extract and transport disk angular momentum was developed in early theoretical models and confirmed by a variety of numerical simulations. The recent high resolution Atacama Large Millimeter Array (ALMA) observations of disks and outflows now confirm several key aspects of these ideas, e.g., that jets rotate and originate from large regions of their underlying disks. New insights on accretion disk physics show that magneto-rotational instability (MRI) turbulence is strongly damped, leaving magnetized disk winds as the dominant mechanism for transporting disk angular momentum. This has major consequences for star formation, as well as planet formation. Outflows also play an important role in feedback processes particularly in the birth of low mass stars and cluster formation. Despite being almost certainly fundamental to their production and focusing, magnetic fields in outflows in protostellar systems, and even in the disks, are notoriously difficult to measure. Most methods are indirect and lack precision, as for example, when using optical/near-infrared line ratios. Moreover, in those rare cases where direct measurements are possible-where synchrotron radiation is observed, one has to be very careful in interpreting derived values. Here we also explore what is known about magnetic fields from observations, and take a forward look to the time when facilities such as SPIRou and the SKA are in routine operation.

Protostellar Jet and Outflow in the Collapsing Cloud Core

Astrophysics and Space Science Proceedings, 2009

Using three-dimensional resistive MHD nested grid simulations, we investigate the driving mechanism of outflows and jets in star formation process. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculated cloud evolution from the molecular cloud core (n c = 10 4 cm −3 , r = 4.6×10 4 AU) to the stellar core (n c = 10 22 cm −3 , r ∼ 1R ⊙ ), where n c and r denote the central density and radius of each object, respectively. In the collapsing cloud core, we found two distinct flows: Low-velocity outflows (∼5 km s −1 ) with a wide opening angle, driven from the adiabatic core, and high-velocity jets (∼30 km s −1 ) with good collimation, driven from the protostar. High-velocity jets are enclosed by low-velocity outflow. The difference in the degree of collimation between the two flows is caused by the strength of the magnetic field and configuration of the magnetic field lines. The magnetic field around an adiabatic core is strong and has an hourglass configuration; therefore, the low-velocity outflow from the adiabatic core are driven mainly by the magnetocentrifugal mechanism and guided by the hourglass-like field lines. In contrast, the magnetic field around the protostar is weak and has a straight configuration owing to Ohmic dissipation in the highdensity gas region. Therefore, high-velocity jet from the protostar are driven mainly by the magnetic pressure gradient force and guided by straight field lines. Differing depth of the gravitational potential between the adiabatic core and the protostar cause the difference of the flow speed. Low-velocity outflows correspond to the observed molecular outflows, while high-velocity jets correspond to the observed optical jets. We suggest that the protostellar outflow and the jet are driven by different cores, rather than that the outflow being entrained by the jet.

Protostellar Jets Driven by a Disorganized Magnetic Field

We have proposed a viscoelastic model of the Maxwell stresses due to the disorganized magnetic field in MRI-driven MHD turbulence. Viscoelastic fluids in the laboratory are known to produce jet-like structures under the action of a rotating sphere. Here we argue that a similar mechanism may help explain jets in protostellar systems. Such jets would be driven not by large-scale organized magnetic fields, but by the mean-field stresses of small-scale tangled magnetic fields.