{"content"=>"Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for -mediated transformation of switchgrass ().", "i"=>[{"content"=>"Agrobacterium"}, {"content"=>"Panicum virgatum"}]} (original) (raw)

Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression

Plant Biotechnology Journal, 2017

Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second-versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.

Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.)

Biotechnology for Biofuels, 2019

Background Switchgrass (Panicum virgatum L.), a North American prairie grassland species, is a potential lignocellulosic biofuel feedstock owing to its wide adaptability and biomass production. Production and genetic manipulation of switchgrass should be useful to improve its biomass composition and production for bioenergy applications. The goal of this project was to develop a high-throughput stable switchgrass transformation method using Agrobacterium tumefaciens with subsequent plant regeneration. Results Regenerable embryogenic cell suspension cultures were established from friable type II callus-derived inflorescences using two genotypes selected from the synthetic switchgrass variety ‘Performer’ tissue culture lines 32 and 605. The cell suspension cultures were composed of a heterogeneous fine mixture culture of single cells and aggregates. Agrobacterium tumefaciens strain GV3101 was optimum to transfer into cells the pANIC-10A vector with a hygromycin-selectable marker gene ...

Selection and characterization of a new switchgrass ( Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation

Scientia Horticulturae, 2011

Switchgrass (Panicum virgatum L.) is used horticulturally as an ornamental and agronomically as an animal feedstock and a putative bio-energy crop. Genetic transformation, using somatic embryogenic (SE) callus derived from mature seeds, is one strategy for improving switchgrass traits. A superior switchgrass line, HR8, was developed in this study using recurrent tissue culture selection from cv. Alamo. Eighty two percent of HR8 seeds germinated after harvest comparing to 26.8% for unselected 'Alamo'. HR8 seeds that germinated produced 84.9% SE callus. HR8 seeds had higher endogenous abscisic acid (ABA) contents and responded differently to exogenous additions of ABA in culture. Endophytes were isolated from switchgrass seeds and callus. HR8 callus had less endophytic contamination than that of 'Alamo' callus. HR8 SE calli were genetically transformable using Agrobacterium. Therefore, HR8 is a superior line for generating SE callus and Agrobacterium-mediated transformation.

{"__content__"=>"Development and use of a switchgrass (L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance.", "i"=>{"__content__"=>"Panicum virgatum"}}

Biotechnology for biofuels, 2017

The mission of the BioEnergy Science Center (BESC) was to enable efficient lignocellulosic-based biofuel production. One BESC goal was to decrease poplar and switchgrass biomass recalcitrance to biofuel conversion while not affecting plant growth. A transformation pipeline (TP), to express transgenes or transgene fragments (constructs) in these feedstocks with the goal of understanding and decreasing recalcitrance, was considered essential for this goal. Centralized data storage for access by BESC members and later the public also was essential. A BESC committee was established to codify procedures to evaluate and accept genes into the TP. A laboratory information management system (LIMS) was organized to catalog constructs, plant lines and results from their analyses. One hundred twenty-eight constructs were accepted into the TP for expression in switchgrass in the first 5 years of BESC. Here we provide information on 53 of these constructs and the BESC TP process. Eleven of the co...

Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach

Biotechnology for Biofuels, 2012

Background: The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks. Results: Down-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin pathway yielded switchgrass (Panicum virgatum) that was more susceptible to bioconversion after dilute acid pretreatment. Here we examined the response of these plant lines to milder pretreatment conditions with yeast-based simultaneous saccharification and fermentation and a consolidated bioprocessing approach using Clostridium thermocellum, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Unlike the S. cerevisiae SSF conversions, fermentations of pretreated transgenic switchgrass with C. thermocellum showed an apparent inhibition of fermentation not observed in the wild-type switchgrass. This inhibition can be eliminated by hot water extraction of the pretreated biomass, which resulted in superior conversion yield with transgenic versus wild-type switchgrass for C. thermocellum, exceeding the yeast-based SSF yield. Further fermentation evaluation of the transgenic switchgrass indicated differential inhibition for the Caldicellulosiruptor sp. strains, which could not be rectified by additional processing conditions. Gas chromatography-mass spectrometry (GC-MS) metabolite profiling was used to examine the fermentation broth to elucidate the relative abundance of lignin derived aromatic compounds. The types and abundance of fermentation-derived-lignin constituents varied between C. thermocellum and each of the Caldicellulosiruptor sp. strains.

Switchgrass (Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application

Plant science : an international journal of experimental plant biology, 2011

Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that has received considerable attention as a potential dedicated biofuel and bioproduct feedstock. Genetic improvement of switchgrass is needed for better cellulosic ethanol production, especially to improve cellulose-to-lignin ratios. Cell suspension cultures offer an in vitro system for mutant selection, mass propagation, gene transfer, and cell biology. Toward this end, switchgrass cell suspension cultures were initiated from embryogenic callus obtained from genotype Alamo 2. They have been established and characterized with different cell type morphologies: sandy, fine milky, and ultrafine cultures. Characterization includes histological analysis using scanning electron microscopy, and utility using protoplast isolation. A high protoplast isolation rate of up to 10(6) protoplasts/1.0g of cells was achieved for the fine milky culture, whereas only a few protoplasts were isolated for the sandy and ultrafine cultur...

Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production

Biotechnology for Biofuels, 2013

Background: Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, "absent technological breakthroughs", it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold. Results: We have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/ pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance.

Micropropagation of Switchgrass by Node Culture

Crop Science, 1996

Switchgrass (Panicum virgatum L.) is naturally outerossing; therefore, maintenance of genotype is difficult through sexual propagation. The objective of this study was to develop a micropropagation procedure for the multiplication of desired or selected genotypes. Nodal segments were surface sterilized, split longitudinally, and placed with the cut surface on solid MS medium containing 30 g L-~ maltose and different concentrations of 6-benzylaminopurine (BAP) as the only growth regulator. Best shoot proliferation was obtained with 12.5 ~tM BAP and culture at 29°C. Shoots were easily rooted on MS medium without BAP. Under optimum conditions, it is possible to produce approximately 500 plantlets from one parent plant in 12 wk.