Copepod grazing during spring blooms: Does Calanus pacificus avoid harmful diatoms (original) (raw)

2005, Progress in Oceanography

During late winter and spring of 2002 and 2003, 24, 2-3 day cruises were conducted to Dabob Bay, Washington State, USA, to examine the grazing, egg production, and hatching success rates of adult female Calanus pacificus and Pseudocalanus newmani. The results of the copepod grazing experiments for C. pacificus are discussed here. Each week, copepod grazing incubation experiments from two different depth layers were conducted. Grazing was measured by both changes in chlorophyll concentration and cell counts. In 2002, there was one moderate bloom consisting mainly of Thalassiosira spp. in early February, and a larger bloom in April comprised of two Chaetoceros species and Phaeocystis sp. Similarly, in 2003, there were two blooms, an early one dominated by Thalassiosira spp., and a later one consisting of Chaetoceros spp. and Thalassiosira spp. Clearance rates on individual prey species, as calculated by cell counts, showed that C. pacificus are highly selective in their feeding, and may have much higher clearance rates on individual taxa than rates calculated from bulk chlorophyll disappearance. During weeks of high phytoplankton concentration, the copepods generally ate phytoplankton. However, they often rejected the most abundant phytoplankton species, particularly certain Thalassiosira spp., even though the rejected prey were often of the same genus and similar size to the preferred prey. It is speculated that this avoidance may be related to the possible deleterious effects that certain of these diatom species have on the reproductive success of these copepods. During weeks of medium to low phytoplankton concentration, the copepods selectively ate certain species of phytoplankton, and often had high electivity for microzooplankton. The selection mechanism must consist of active particle rejection most likely based on detection of surface chemical properties, since the diatoms that were selected were of the same genus, nearly the same size, and at lower numerical abundance than those cells that were avoided. The grazing choices made by these copepods may have important consequences for the overall ecosystem function within coastal and estuarine systems through changes in the transfer efficiency of energy to higher trophic levels.