Parathyroid Hormone-induced Bone Resorption Does Not Occur in the Absence of Osteopontin (original) (raw)

Accentuated osteoclastic response to parathyroid hormone undermines bone mass acquisition in osteonectin-null mice

Bone, 2008

Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone. In the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 μg/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin-/mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH.

Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms

Journal of Bone and Mineral Research, 2010

Sustained parathyroid hormone (PTH) elevation stimulates bone remodeling (ie, both resorption and formation). The former results from increased RANKL synthesis, but the cause of the latter has not been established. Current hypotheses include release of osteoblastogenic factors from osteoclasts or from the bone matrix during resorption, modulation of the production and activity of osteoblastogenic factors from cells of the osteoblast lineage, and increased angiogenesis. To dissect the contribution of these mechanisms, 6-month-old Swiss-Webster mice were infused for 5 days with 470 ng/h PTH(1-84) or 525 ng/h soluble RANKL (sRANKL). Both agents increased osteoclasts and osteoblasts in vertebral cancellous bone, but the ratio of osteoblasts to osteoclasts and the increase in bone formation was greater in PTH-treated mice. Cancellous bone mass was maintained in mice receiving PTH but lost in mice receiving sRANKL, indicating that maintenance of balanced remodeling requires osteoblastogenic effects beyond those mediated by osteoclasts. Consistent with this contention, PTH, but not sRANKL, decreased the level of the Wnt antagonist sclerostin and increased the expression of the Wnt target genes Nkd2, Wisp1, and Twist1. Furthermore, PTH, but not sRANKL, increased the number of blood vessels in the bone marrow. Weekly injections of the RANKL antagonist osteoprotegerin at 10 mg/g for 2 weeks prior to PTH infusion eliminated osteoclasts and osteoblasts and prevented the PTH-induced increase in osteoclasts, osteoblasts, and blood vessels. These results indicate that PTH stimulates osteoclast-dependent as well as osteoclast-independent (Wnt signaling) pro-osteoblastogenic pathways, both of which are required for balanced focal bone remodeling in cancellous bone. ß

Induction of osteoclast formation by parathyroid hormone depends on an action on stromal cells

Journal of Endocrinology, 1998

It is believed that parathyroid hormone (PTH) increases the resorptive activity of pre-existing osteoclasts through a primary interaction with cells of the osteoblastic lineage. Much less is known, however, of the mechanisms by which PTH induces osteoclast formation. It is known that osteoclast formation occurs through a contact-dependent interaction between stromal cells and haemopoietic precursors, but it is not known whether PTH acts on stromal cells or precursors to induce osteoclast formation. To address this issue, we compared the ability of haemopoietic cultures to generate osteoclasts, identified as calcitonin receptor positive (CTRP) cells, and to resorb bone in response to PTH and 1,25(OH)2 vitamin D3 (1,25(OH)2D3). We found that when murine haemopoietic tissues were incubated at densities sufficiently high to support haemopoiesis, both PTH and 1,25(OH)2D3 induced bone resorption in bone marrow cells, but in cultures of haemopoietic spleen only 1,25(OH)2D3 induced CTRP cel...

PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats

Journal of Bone and Mineral Research, 1995

Using in situ hybridization, we correlated the expression of mRNA for the parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) receptor with bone formation and resorption in undecalcified serial sections of bones from growing rats. In addition we investigated the presence of biologically active receptors in the same locations using an in vivo autoradiographic technique. In the ulnae of growing rats, there are well defined zones of cortical bone formation and resorption. These contribute to the modeling drifts by which the bone achieves its adult shape. Forming surfaces incorporate fluorochrome labels, are lined with osteoid, and have a layer of cuboidal osteoblasts that have a high alkaline phosphatase activity. Resorbing surfaces have no fluorochrome incorporation, no osteoid, and are lined with resorbing cells with high tartrate-resistant acid phosphatase (TRAP) activity. PTH/PTHrP receptor mRNA was expressed predominantly on forming but not on resorbing bone surfaces and colocalized with sites of binding of radiolabeled PTH after intravenous injection. PTH/PTHrP mRNA expression on osteocytes was inconclusive but radiolabeled PTH bound to a proportion of osteocytes in all regions of the cortex although binding was not specifically related to areas of bone formation or resorption. These results suggest that in growing animals the actions of PTH or PTHrP are connected more with bone formation than resorption. Such a role may be linked to the ability of PTH to induce bone formation in adults but does not explain the actions of the hormone in regulating resorption. Binding of PTH to osteocytes increases the evidence for a physiological role for these cells.

Are Osteoclasts Needed for the Bone Anabolic Response to Parathyroid Hormone?: A STUDY OF INTERMITTENT PARATHYROID HORMONE WITH DENOSUMAB OR ALENDRONATE IN KNOCK-IN MICE EXPRESSING HUMANIZED RANKL

Journal of Biological Chemistry, 2010

PTH stimulates osteoblastic cells to form new bone and to produce osteoblast-osteoclast coupling factors such as RANKL. Whether osteoclasts or their activity are needed for PTH anabolism remains uncertain. We treated ovariectomized huRANKL knock-in mice with a human RANKL inhibitor denosumab (DMAb), alendronate (Aln), or vehicle for 4 weeks, followed by co-treatment with intermittent PTH for 4 weeks. Loss of bone mass and microarchitecture was prevented by Aln and further significantly improved by DMAb. PTH improved bone mass, microstructure, and strength, and was additive to Aln but not to DMAb. Aln inhibited biochemical and histomorphometrical indices of bone turnover,--i.e. osteocalcin and bone formation rate (BFR) on cancellous bone surfaces-, and Dmab inhibited them further. However Aln increased whereas Dmab suppressed osteoclast number and surfaces. PTH significantly increased osteocalcin and bone formation indices, in the absence or presence of either antiresorptive, although BFR remained lower in presence of Dmab. To further evaluate PTH effects in the complete absence of osteoclasts, high dose PTH was administered to RANK(-/-) mice. PTH increased osteocalcin similarly in RANK(-/-) and WT mice. It also increased BMD in RANK(-/-) mice, although less than in WT. These results further indicate that osteoclasts are not strictly required for PTH anabolism, which presumably still occurs via stimulation of modeling-based bone formation. However the magnitude of PTH anabolic effects on the skeleton, in particular its additive effects with antiresorptives, depends on the extent of the remodeling space, as determined by the number and activity of osteoclasts on bone surfaces.

Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes

Endocrinology, 2014

PTH upregulates the expression of the receptor activator of nuclear factor κB ligand (Rankl) in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell responsible for RANKL-mediated stimulation of bone resorption remains undefined. We report that constitutive activation of PTH receptor signaling only in osteocytes in transgenic mice (DMP1-caPTHR1) was sufficient to increase Rankl expression and bone resorption. Resorption in DMP1-caPTHR1 mice crossed with mice lacking the distal control region regulated by PTH in the Rankl gene (DCR(-/-)) was similar to DMP1-caPTHR1 mice at 1 month of age, but progressively declined to reach values undistinguishable from wild-type (WT) mice at 5 months of age. Moreover, DMP1-caPTHR1 mice exhibited low tissue material density and increased serum alkaline phosphatase activity at 5 month of age, and these indices of high remodeling were partially and totally corrected in compound DMP1-caPTHR1;DCR(-/-) male mice,...