A Characterization of Jacobians by the Existence of Picard Bundles (original) (raw)
Abstract
Based on the Matsusaka-Ran criterion we give a criterion to characterize when a principal polarized abelian variety is a Jacobian by the existence of Picard bundles. Contents Introduction 1 Acknowledgements 2 1. Fourier-Mukai transforms for abelian varieties 2 2. Picard Bundles on Jacobians 4 3. A Characterization of Jacobians via Picard Bundles 8 References 10 1. Fourier-Mukai transforms for abelian varieties
Key takeaways
AI
- Existence of Picard bundles characterizes Jacobians of principal polarized abelian varieties (p.p.a.v.s).
- Theorem: A p.p.a.v. (A, Θ) is a Jacobian if a WIT g sheaf F exists with specific Chern classes.
- Matsusaka-Ran criterion is extended using Picard bundles to identify Jacobians explicitly.
- Fourier-Mukai transforms facilitate the study of Picard bundles and their properties.
- The paper presents a new criterion for determining Jacobians using geometric properties of curves and sheaves.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (13)
- C. Birkenhake and H. Lange, Complex abelian varieties, vol. 302 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci- ences], Springer-Verlag, Berlin, second ed., 2004.
- L. Ein and R. Lazarsfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, in Complex projective geome- try (Trieste, 1989/Bergen, 1989), vol. 179 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1992, pp. 149-156.
- W. Fulton, Intersection theory, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, second ed., 1998.
- G. Kempf, Toward the inversion of abelian integrals. I, Ann. of Math. (2), 110 (1979), pp. 243-273.
- Inversion of abelian integrals, Bull. Amer. Math. Soc. (N.S.), 6 (1982), pp. 25- 32.
- S. Mukai, Duality between D(X) and D( X) with its application to Picard sheaves, Nagoya Math. J., 81 (1981), pp. 153-175.
- Fourier functor and its application to the moduli of bundles on an abelian variety, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North- Holland, Amsterdam, 1987, pp. 515-550.
- D. Mumford, Abelian varieties, Tata Inst. Fund. Res. Stud. Math., vol. 5, Tata Inst. Fundamental Res., Bombay, 1970.
- G. Pareschi and M. Popa, Regularity on abelian varieties. I, J. Amer. Math. Soc., 16 (2003), pp. 285-302 (electronic).
- Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann., 340 (2008), pp. 209-222.
- Z. Ran, On subvarieties of abelian varieties, Invent. Math., 62 (1981), pp. 459-479.
- R. L. E. Schwarzenberger, Jacobians and symmetric products, Illinois J. Math., 7 (1963), pp. 257-268.
- Departamento de Matemáticas and Instituto Universitario de Física Fun- damental y Matemáticas (IUFFYM), Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain