Global distribution and environmental suitability for chikungunya virus, 1952 to 2015 (original) (raw)
Related papers
Spatial and Spatio-temporal Epidemiology
Since the 1970s, mosquito-borne pathogens have spread to previously disease-free areas, as well as causing increased illness in endemic areas. In particular, dengue and chikungunya viruses, transmitted primarily by Aedes aegypti and secondarily by Aedes albopictus mosquitoes, represent a threat for up to a third of the world's population, and are a growing public health concern. In this study, we assess the spatial and temporal factors related to the occurrences of historic dengue and chikungunya outbreaks in 76 nations focused geographically on the Indian Ocean, with outbreak data from 1959 to 2009. First, we describe the historical spatial and temporal patterns of outbreaks of dengue and chikungunya in the focal nations. Second, we use a boosted regression tree approach to assess the statistical relationships of nations' concurrent outbreak occurrences and annual occurrences with their spatial proximity to prior infections and climatic and socioeconomic characteristics. We demonstrate that higher population density and shorter distances among nations with outbreaks are the dominant factors that characterize both dengue and chikungunya outbreaks. In conclusion, our analysis provides crucial insights, which can be applied to improve nations' surveillance and preparedness for future vector-borne disease epidemics.
Chikungunya virus transmission potential by local aedes mosquitoes in the americas and europe
PLoS neglected tropical diseases, 2015
Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i)...
Background In 2016, a chikungunya virus (CHIKV) outbreak was reported in Mandera, Kenya. This was the first major CHIKV outbreak in the country since the global re-emergence of this virus, which arose as an initial outbreak in Kenya in 2004. Therefore, we collected samples and sequenced viral genomes from the 2016 Mandera outbreak. Methodology/Principal Findings All Kenyan genomes contained two mutations, E1:K211E and E2:V264A, recently reported to have an association with increased infectivity, dissemination and transmission in the Aedes aegypti (Ae. aegypti) vector. Phylogeographic inference of temporal and spatial virus relationships using Bayesian approaches showed that this Ae. aegypti adapted strain emerged within the East, Central, and South African (ECSA) lineage of CHIKV between 2005 and 2008, most probably in India. It was also in India where the first large outbreak caused by this strain appeared, in New Delhi, 2010. More importantly, our results also showed that this str...
Chikungunya, Dengue, Zika, and Other Emerging Mosquito-Borne Viruses
2021
The past two decades have seen an explosive increase in emerging and reemerging infections, ranging from SARS and Ebola viruses, to epidemics of arthropod-borne viruses (arboviruses), including chikungunya and Zika viruses. Dengue and St. Louis encephalitis viruses have emerged from areas of the United States where they had been absent for over a decade. This alarming increase in number and frequency of outbreaks of vector-borne diseases, in particular, stems from the convergence of several factors. Abrupt changes in land use have brought humans closer to transmission cycles between vectors and non-human vertebrate hosts that previously had been strictly sylvatic. Rapid and unplanned urbanization due to spread of poverty has created opportunities for insect vectors, like Aedes albopictus, to establish urban endemicity by adapting breeding habits to thrive in man-made containers. Global warming has expanded the habitable range of vectors like Aedes aegypti. This chapter focuses on viruses transmitted by mosquitoes to highlight the importance of these emerging diseases. Only by learning from the past can we anticipate and prepare for the future.
The American Journal of Tropical Medicine and Hygiene
In 2016, a chikungunya virus (CHIKV) outbreak was reported in Mandera, Kenya. This was the first major CHIKV outbreak in the country since the global reemergence of this virus in Kenya in 2004. We collected samples and sequenced viral genomes from this outbreak. All Kenyan genomes contained two mutations, E1:K211E and E2:V264A, recently reported to have an association with increased infectivity, dissemination, and transmission in the Aedes aegypti vector. Phylogeographic inference of temporal and spatial virus relationships showed that this variant emerged within the East, Central, and South African lineage between 2005 and 2008, most probably in India. It was also in India where the first large outbreak caused by this virus appeared, in New Delhi, 2010. More importantly, our results also showed that this variant is no longer contained to India. We found it present in several major outbreaks, including the 2016 outbreaks in Pakistan and Kenya, and the 2017 outbreak in Bangladesh. Thus, this variant may have a capability of driving large CHIKV outbreaks in different regions of the world. Our results point to the importance of continued genomic-based surveillance and prompt urgent vector competence studies to assess the level of vector susceptibility and virus transmission, and the impact this might have on this variant's epidemic potential and global spread.
Spatial-temporal dynamics and recurrence of chikungunya virus in Brazil
Chikungunya virus (CHIKV) is an Aedes mosquito-borne virus that has caused explosive epidemics linked to acute, chronic, and severe clinical outcomes. Since 2014, Brazil has had the highest number of chikungunya fever (CHIKF) cases in the Americas. Here, we report and contextualize the spatiotemporal dynamic of CHIKF in Brazil and combine genomic, epidemiological, and vector analyses to investigate CHIKF recurrence in several Brazilian states. From 2013 to 2022, CHIKV caused seven epidemic waves across Brazil, affecting 59.5% (3,316 of 5,570) of the country’s municipalities. To date, Ceará State in the northeast has been the most affected, with 81,274 cases during the two largest epidemic waves in 2016 and 2017, and the ongoing third wave in 2022. The 2022 CHIKF recurrence was associated with a new introduction of an East/Central/South African strain. Also, the CHIKV recurrences in Ceará, Tocantins, and Pernambuco States were limited to municipalities with few or no prior reported c...
Nowcasting the Spread of Chikungunya Virus in the Americas
PLoS ONE, 2014
Background: In December 2013, the first locally-acquired chikungunya virus (CHIKV) infections in the Americas were reported in the Caribbean. As of May 16, 55,992 cases had been reported and the outbreak was still spreading. Identification of newly affected locations is paramount to intervention activities, but challenging due to limitations of current data on the outbreak and on CHIKV transmission. We developed models to make probabilistic predictions of spread based on current data considering these limitations. Methods and Findings: Branching process models capturing travel patterns, local infection prevalence, climate dependent transmission factors, and associated uncertainty estimates were developed to predict probable locations for the arrival of CHIKV-infected travelers and for the initiation of local transmission. Many international cities and areas close to where transmission has already occurred were likely to have received infected travelers. Of the ten locations predicted to be the most likely locations for introduced CHIKV transmission in the first four months of the outbreak, eight had reported local cases by the end of April. Eight additional locations were likely to have had introduction leading to local transmission in April, but with substantial uncertainty. Conclusions: Branching process models can characterize the risk of CHIKV introduction and spread during the ongoing outbreak. Local transmission of CHIKV is currently likely in several Caribbean locations and possible, though uncertain, for other locations in the continental United States, Central America, and South America. This modeling framework may also be useful for other outbreaks where the risk of pathogen spread over heterogeneous transportation networks must be rapidly assessed on the basis of limited information.
Climate change influences on global distributions of dengue and chikungunya virus vectors
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2015
Numerous recent studies have illuminated global distributions of human cases of dengue and other mosquito-transmitted diseases, yet the potential distributions of key vector species have not been incorporated integrally into those mapping efforts. Projections onto future conditions to illuminate potential distributional shifts in coming decades are similarly lacking, at least outside Europe. This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that, in turn, allowed anticipation of possible changes in distributional patterns into the future. Results indicated complex global rearrangements of potential distributional areas, which--given the impressive dispersal abilities of these two species--are likely to translate into actual distributional shifts. This exercise also signalled a crucial priority: digitization and sharing of existing distributional data so that mode...