In colon epithelia, Clostridium perfringens enterotoxin causes focal leaks by targeting claudins which are apically accessible due to tight junction derangement (original) (raw)

Structure of a C. perfringens Enterotoxin Mutant in Complex with a Modified Claudin-2 Extracellular Loop 2

Journal of Molecular Biology, 2014

CPE (Clostridium perfringens enterotoxin) is the major virulence determinant for C. perfringens type-A food poisoning, the second most common bacterial food-borne illness in the UK and USA. After binding to its receptors, which include particular human claudins, the toxin forms pores in the cell membrane. The mature pore apparently contains a hexamer of CPE, claudin and, possibly, occludin. The combination of high binding specificity with cytotoxicity has resulted in CPE being investigated, with some success, as a targeted cytotoxic agent for oncotherapy. In this paper, we present the X-ray crystallographic structure of CPE in complex with a peptide derived from extracellular loop 2 of a modified, CPE-binding Claudin-2, together with high-resolution native and pore-formation mutant structures. Our structure provides the first atomic-resolution data on any part of a claudin molecule and reveals that claudin's CPE-binding fingerprint (NPLVP) is in a tight turn conformation and binds, as expected, in CPE's C-terminal claudin-binding groove. The leucine and valine residues insert into the binding groove while the first residue, asparagine, tethers the peptide via an interaction with CPE's aspartate 225 and the two prolines are required to maintain the tight turn conformation. Understanding the structural basis of the contribution these residues make to binding will aid in engineering CPE to target tumor cells.

A recombinant C-terminal toxin fragment provides evidence that membrane insertion is important for Clostridium perfringens enterotoxin cytotoxicity

Molecular Microbiology - MOL MICROBIOL, 1991

Additional studies are underway to determine the temporal order and intrinsic importance of each CPE event for cytotoxicity. We now demonstrate that a truncated CPE fragment binds to membranes, but is unable to Insert into membranes or cause any other subsequent post-insertion event. This is the first experimental evidence supporting the importance of membrane insertion for CPE cytotoxicity. Binding of the CPE fragment is also shown to be irreversible, strongly suggesting that the irreversible binding of wild-type CPE is not due solely to insertion of CPE into membranes.

Claudin-9 structures reveal mechanism for toxin-induced gut barrier breakdown

Proceedings of the National Academy of Sciences, 2019

The human pathogenic bacterium Clostridium perfringens secretes an enterotoxin (CpE) that targets claudins through its C-terminal receptor-binding domain (cCpE). Isoform-specific binding by CpE causes dissociation of claudins and tight junctions (TJs), resulting in cytotoxicity and breakdown of the gut epithelial barrier. Here, we present crystal structures of human claudin-9 (hCLDN-9) in complex with cCpE at 3.2 and 3.3 Å. We show that hCLDN-9 is a high-affinity CpE receptor and that hCLDN-9–expressing cells undergo cell death when treated with CpE but not cCpE, which lacks its cytotoxic domain. Structures reveal cCpE-induced alterations to 2 epitopes known to enable claudin self-assembly and expose high-affinity interactions between hCLDN-9 and cCpE that explain isoform-specific recognition. These findings elucidate the molecular bases for hCLDN-9 selective ion permeability and binding by CpE, and provide mechanisms for how CpE disrupts gut homeostasis by dissociating claudins and...

Evidence that Membrane Rafts Are Not Required for the Action of Clostridium perfringens Enterotoxin

Infection and Immunity, 2008

The action of bacterial pore-forming toxins typically involves membrane rafts for binding, oligomerization, and/or cytotoxicity. Clostridium perfringens enterotoxin (CPE) is a pore-forming toxin with a unique, multistep mechanism of action that involves the formation of complexes containing tight junction proteins that include claudins and, sometimes, occludin. Using sucrose density gradient centrifugation, this study evaluated whether the CPE complexes reside in membrane rafts and what role raft microdomains play in complex formation and CPE-induced cytotoxicity. Western blot analysis revealed that the small CPE complex and the CPE hexamer 1 (CH-1) complex, which is sufficient for CPE-induced cytotoxicity, both localize outside of rafts. The CH-2 complex was also found mainly in nonraft fractions, although a small pool of raft-associated CH-2

Clostridium perfringens Enterotoxin: The Toxin Forms Highly Cation-Selective Channels in Lipid Bilayers

Toxins, 2018

One of the numerous toxins produced by Clostridium perfringens is Clostridium perfringens enterotoxin (CPE), a polypeptide with a molecular mass of 35.5 kDa exhibiting three different domains. Domain one is responsible for receptor binding, domain two is involved in hexamer formation and domain three has to do with channel formation in membranes. CPE is the major virulence factor of this bacterium and acts on the claudin-receptor containing tight junctions between epithelial cells resulting in various gastrointestinal diseases. The activity of CPE on Vero cells was demonstrated by the entry of propidium iodide (PI) in the cells. The entry of propidium iodide caused by CPE was well correlated with the loss of cell viability monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. CPE formed ion-permeable channels in artificial lipid bilayer membranes with a single-channel conductance of 620 pS in 1 M KCl. The single-channel conductance was not a linea...

CaCo-2 Cells Treated with Clostridium perfringensEnterotoxin Form Multiple Large Complex Species, One of Which Contains the Tight Junction Protein Occludin

Journal of Biological Chemistry, 2000

The previous model for the action of Clostridium perfringens enterotoxin (CPE) proposed that (i) CPE binds to host cell receptor(s), forming a small (ϳ90 kDa) complex, (ii) the small complex interacts with other eucaryotic protein(s), forming a large (ϳ160 kDa) complex, and (iii) the large complex triggers massive permeability changes, thereby inducing enterocyte death. In the current study, Western immunoblot analysis demonstrated that CPE bound to CaCo-2 human intestinal cells at 37°C forms multiple large complex species, with apparent sizes of ϳ200, ϳ155, and ϳ135 kDa. These immunoblot experiments also revealed that occludin, an ϳ65-kDa tight junction protein, is present in the ϳ200-kDa large complex but absent from the other large complex species. Immunoprecipitation studies confirmed that occludin physically associates with CPE in large complex material and also indicated that occludin is absent from small complex. These results strongly suggest that occludin becomes associated with CPE during formation of the ϳ200-kDa large complex. A postbinding association between CPE and occludin is consistent with the failure of rat fibroblast transfectants expressing occludin to bind CPE in the current study. Those occludin transfectants were also insensitive to CPE, strongly suggesting that occludin expression is not sufficient to confer CPE sensitivity. However, the occludin-containing, ϳ200-kDa large complex may contribute to CPE-induced cytotoxicity, because nontoxic CPE point mutants did not form any large complex species. By showing that large complex material is comprised of several species (one containing occludin), the current studies indicate that CPE action is more complicated than previously appreciated and also provide additional evidence for CPE interactions with tight junction proteins, which could be important for CPE-induced pathophysiology. Clostridium perfringens is a Gram-positive, endospore-forming, anaerobic bacterium that produces a plethora of protein

Mapping of functional regions of Clostridium perfringens type A enterotoxin

Infection and immunity, 1992

Studies were conducted to allow construction of an initial map of the structure-versus-function relationship of the Clostridium perfringens type A enterotoxin (CPE). Removal of the N-terminal 25 amino acids of CPE increased the primary cytotoxic effect of CPE but did not affect binding. CPE sequences required for at least four epitopes were also identified.