Inhibiting transthyretin amyloid fibril formation via protein stabilization (original) (raw)

Structural evidence for native state stabilization of a conformationally labile amyloidogenic transthyretin variant by fibrillogenesis inhibitors

FEBS Letters, 2013

a b s t r a c t Several classes of chemicals are able to bind to the thyroxine binding sites of transthyretin (TTR), stabilizing its native state and inhibiting in vitro the amyloidogenic process. The amyloidogenic I84S TTR variant undergoes a large conformational change at moderately acidic pH. Structural evidence has been obtained by X-ray analysis for the native state stabilization of I84S TTR by two chemically distinct fibrillogenesis inhibitors. In fact, they fully prevent the acidic pH-induced protein conformational change as a result of a long-range stabilizing effect. This study provides further support to the therapeutic strategy based on the use of TTR stabilizers as anti-amyloidogenic drugs.

Inhibiting transthyretin conformational changes that lead to amyloid fibril formation

Proceedings of the National Academy of Sciences of the United States of America, 1998

Insoluble protein fibrils resulting from the self-assembly of a conformational intermediate are implicated as the causative agent in several severe human amyloid diseases, including Alzheimer's disease, familial amyloid polyneuropathy, and senile systemic amyloidosis. The latter two diseases are associated with transthyretin (TTR) amyloid fibrils, which appear to form in the acidic partial denaturing environment of the lysosome. Here we demonstrate that flufenamic acid (Flu) inhibits the conformational changes of TTR associated with amyloid fibril formation. The crystal structure of TTR complexed with Flu demonstrates that Flu mediates intersubunit hydrophobic interactions and intersubunit hydrogen bonds that stabilize the normal tetrameric fold of TTR. A small-molecule inhibitor that stabilizes the normal conformation of a protein is desirable as a possible approach to treat amyloid diseases. Molecules such as Flu also provide the means to rigorously test the amyloid hypothesis...

A Substructure Combination Strategy To Create Potent and Selective Transthyretin Kinetic Stabilizers That Prevent Amyloidogenesis and Cytotoxicity

Journal of the American Chemical Society, 2010

Transthyretin aggregation-associated proteotoxicity appears to cause several human amyloid diseases. Rate-limiting tetramer dissociation and monomer misfolding of transthyretin (TTR) occur before its aggregation into cross-β-sheet amyloid fibrils. Small molecule binding to and preferential stabilization of the tetrameric state of TTR over the dissociative transition state raises the kinetic barrier for dissociation, imposing kinetic stabilization on TTR and preventing aggregation. This is an effective strategy to halt neurodegeneration associated with polyneuropathy, according to recent placebo-controlled clinical trial results. In three recent papers, we systematically ranked possibilities for the three substructures composing a typical TTR kinetic stabilizer, using fibril inhibition potency and plasma TTR binding selectivity data. Herein, we have successfully employed a substructure combination strategy to use these data to develop potent and selective TTR kinetic stabilizers that rescue cells from the cytotoxic effects of TTR amyloidogenesis. Of the 92 stilbene and dihydrostilbene analogues synthesized, nearly all potently inhibit TTR fibril formation. Seventeen of these exhibit a binding stoichiometry of > 1.5 of a maximum of 2 to plasma TTR, while displaying minimal binding to the thyroid hormone receptor (< 20%). Six analogues were definitively categorized as kinetic stabilizers by evaluating dissociation time-courses. High resolution TTR• (kinetic stabilizer) 2 crystal structures (1.31-1.70 Å) confirmed the anticipated binding orientation of the 3,5-dibromo-4-hydroxyphenyl substructure and revealed a strong preference of the isosteric 3,5dibromo-4-aminophenyl substructure to bind to the inner thyroxine binding pocket.

4′-Iodo-4′-Deoxydoxorubicin Disrupts the Fibrillar Structure of Transthyretin Amyloid

The American Journal of Pathology, 2000

Transthyretin (TTR) is a tetrameric protein synthesized mainly by the liver and the choroid plexus, from where it is secreted into the plasma and the cerebrospinal fluid, respectively. Some forms of polyneuropathy, vitreopathy, and cardiomyopathy are caused by the deposition of normal and/or mutant TTR molecules in the form of amyloid fibrils. Familial amyloidotic polyneuropathy is the most common form of TTR amyloidosis related to the V30M variant. It is still unclear the process by which soluble proteins deposit as amyloid. The treatment of amyloidrelated disorders might attempt the stabilization of the soluble protein precursor to retard or inhibit its deposition as amyloid; or aim at the resorption of the deposited amyloid. The anthracycline 4-iodo-4-deoxydoxorubicin (I-DOX) has been shown to reduce the amyloid load in immunoglobulin light-chain amyloidosis. We investigated 1) whether I-DOX has affinity for TTR amyloid in tissues, 2) determined the I-DOX binding constants to TTR synthetic fibrils, and 3) determined the nature of the effect of I-DOX on TTR fibrils. We report that 1) I-DOX co-localizes with amyloid deposits in tissue sections of patients with familial amyloidotic polyneuropathy; 2) I-DOX strongly interacts with TTR amyloid fibrils and presents two binding sites with k d of 1.5 ؋ 10 ؊11 mol/L and 5.6 ؋ 10 ؊10 mol/L, respectively; and 3) I-DOX disrupts the fibrillar structure of TTR amyloid into amorphous material, as assessed by electron microscopy but does not solubilize the fibrils as confirmed by filter assays. These data support the hypothesis that I-DOX and less toxic derivatives can prove efficient in the treatment of TTR-related amyloidosis.

Amyloid Formation by Transthyretin: From Protein Stability to Protein Aggregation

In recent years the issues of protein stability, folding and aggregation have become central in several pathological conditions and in particular in amyloid diseases. Here, we review the recent developments on the molecular mechanisms of amyloid formation by transthyretin (TTR), in particular, in what concerns to protein conformational stability, protein folding and aggregation.

Inhibition of amyloid beta fibril formation by monomeric human transthyretin

Protein science : a publication of the Protein Society, 2018

Transthyretin (TTR) is a homotetrameric protein that is found in the plasma and cerebrospinal fluid. Dissociation of TTR tetramers sets off a downhill cascade of amyloid formation through polymerization of monomeric TTR. Interestingly, TTR has an additional, biologically relevant activity, which pertains to its ability to slow the progression of amyloid beta (Aβ) associated pathology in transgenic mice. In vitro, both TTR and a kinetically stable variant of monomeric TTR (M-TTR) inhibit the fibril formation of Aβ molecules. Published evidence suggests that tetrameric TTR binds preferentially to Aβ monomers, thus destabilizing fibril formation by depleting the pool of Aβ monomers from aggregating mixtures. Here, we investigate the effects of M-TTR on the in vitro aggregation of Aβ . Our data confirm previous observations that fibril formation of Aβ is suppressed in the presence of sub-stoichiometric amounts of M-TTR. Despite this, we find that sub-stoichiometric levels of M-TTR are n...

Transthyretin microheterogeneity and molecular interactions: implications for amyloid formation

Biomolecular concepts, 2014

Aggregation of transthyretin (TTR), a plasma-binding protein for thyroxine and retinol-binding protein, is the cause of several amyloid diseases. Disease-associated mutations are well known, but wild-type TTR is, to a lesser extent, also amyloidogenic. Monomerization, not oligomer formation as in several other depository diseases, is the rate-limiting step in TTR aggregation, and stabilization of the natively tetrameric form can inhibit amyloid formation. Modifications on Cys10, as well as interactions with native ligands in plasma, were early found to influence the equilibrium between tetrameric and monomeric TTR by dissociating or stabilizing the tetramer. Following these discoveries, synthetic ligands for pharmacological prevention of TTR aggregation could be developed. In this article, we outline how the different types of TTR interactions and its microheterogeneity in plasma are related to its propensity to form amyloid fibrils. We conclude that plasma constituents and dietary ...

Novel Transthyretin Amyloid Fibril Formation Inhibitors: Synthesis, Biological Evaluation, and X-Ray Structural Analysis

PLoS ONE, 2009

Transthyretin (TTR) is one of thirty non-homologous proteins whose misfolding, dissociation, aggregation, and deposition is linked to human amyloid diseases. Previous studies have identified that TTR amyloidogenesis can be inhibited through stabilization of the native tetramer state by small molecule binding to the thyroid hormone sites of TTR. We have evaluated a new series of b-aminoxypropionic acids (compounds 5-21), with a single aromatic moiety (aryl or fluorenyl) linked through a flexible oxime tether to a carboxylic acid. These compounds are structurally distinct from the native ligand thyroxine and typical halogenated biaryl NSAID-like inhibitors to avoid off-target hormonal or anti-inflammatory activity. Based on an in vitro fibril formation assay, five of these compounds showed significant inhibition of TTR amyloidogenesis, with two fluorenyl compounds displaying inhibitor efficacy comparable to the well-known TTR inhibitor diflunisal. Fluorenyl 15 is the most potent compound in this series and importantly does not show off-target anti-inflammatory activity. Crystal structures of the TTR:inhibitor complexes, in agreement with molecular docking studies, revealed that the aromatic moiety, linked to the sp 2 -hybridized oxime carbon, specifically directed the ligand in either a forward or reverse binding mode. Compared to the aryl family members, the bulkier fluorenyl analogs achieved more extensive interactions with the binding pockets of TTR and demonstrated better inhibitory activity in the fibril formation assay. Preliminary optimization efforts are described that focused on replacement of the C-terminal acid in both the aryl and fluorenyl series (compounds 22-32). The compounds presented here constitute a new class of TTR inhibitors that may hold promise in treating amyloid diseases associated with TTR misfolding. (JCS) . These authors contributed equally to this work.

Chromium(III) ion and thyroxine cooperate to stabilize the transthyretin tetramer and suppress in vitro amyloid fibril formation

FEBS Letters, 2006

Transthyretin (TTR) amyloid fibril formation, which is triggered by the dissociation of tetrameric TTR, appears to be the causative factor in familial amyloidotic polyneuropathy and senile systemic amyloidosis. Binding of thyroxine (T 4 ), a native ligand of TTR, stabilizes the tetramer, but the bioavailability of T 4 for TTR binding is limited due to the preferential binding of T 4 to globulin, the major T 4 carrier in plasma. Here, we show that Cr 3+ increased the T 4 -binding capacity of wild-type (WT) and amyloidogenic V30M-TTR. Moreover, we demonstrate that Cr 3+ and T 4 cooperatively suppressed in vitro fibril formation due to the stabilization of WT-TTR and V30M-TTR.