Evidence for successional development in Antarctic hypolithic bacterial communities (original) (raw)

Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica

Frontiers in Microbiology, 2016

The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their interrelationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions.

Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica

Polar Biology, 2011

The McMurdo Dry Valleys region of eastern Antarctica is a cold desert that presents extreme challenges to life. Hypolithic microbial colonisation of the subsoil surfaces of translucent quartz rocks represent a signiWcant source of terrestrial biomass and productivity in this region. Previous studies have described hypoliths as dominated by cyanobacteria. However, hypoliths that occur in the lower Dry Valleys such as the Miers, Garwood and Marshall Val-leys are unusual as they are not necessarily cyanobacteriadominated. These hypoliths support signiWcant eukaryal colonisation by fungi and mosses in addition to cyanobacteria-dominated bacterial assemblages and so have considerable ecological value in this barren landscape. Here, we characterise these novel hypoliths by analysis of environmental rRNA gene sequences. The hypolithic community was demonstrated to be distinct from the surrounding soil and non-translucent rocks. Hypoliths supported cyanobacterial signatures from the Oscillatoriales and Nostocales. Other heterotrophic bacterial signatures were also recovered, and these were phylogenetically diverse and spanned 8 other bacterial phyla. Archaeal phylotypes recovered were phylogenetically aYliated with the large group of unclassiWed, uncultured Crenarcheota. Eukaryal phylotypes indicated that free-living ascomycetous fungi, chlorophytes and mosses (Bryum sp.) were all supported by these hypoliths, and these are thought to be responsible for the extensive eukaryotic biomass that develops around quartz rocks.

Bacterial Diversity in Three Different Antarctic Cold Desert Mineral Soils

Microbial Ecology, 2006

A bacterial phylogenetic survey of three environmentally distinct Antarctic Dry Valley soil biotopes showed a high proportion of so-called Buncultured^phylotypes, with a relatively low diversity of identifiable phylotypes. Cyanobacterial phylotypic signals were restricted to the high-altitude sample, whereas many of the identifiable phylotypes, such as the members of the Actinobacteria, were found at all sample sites. Although the presence of Cyanobacteria and Actinobacteria is consistent with previous culture-dependent studies of microbial diversity in Antarctic Dry Valley mineral soils, many phylotypes identified by 16S rDNA analysis were of groups that have not hitherto been cultured from Antarctic soils. The general belief that such Bextreme^environments harbor a relatively low species diversity was supported by the calculation of diversity indices. The detection of a substantial number of uncultured bacterial phylotypes showing low BLAST identities (G95%) suggests that Antarctic Dry Valley mineral soils harbor a pool of novel psychrotrophic taxa.

Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley

Polar Biology, 2011

Valleys of Antarctica supports abundant quartz and marble substrates for hypolithons-microbial colonists on the underside of these translucent rocks. Three physically distinct hypolithic community types have been identified: cyanobacteria dominated (Type I), fungus dominated (Type II) or moss dominated (Type III). The distribution of the three types was mapped across much of the *75 km 2 area of the upper Miers Valley and correlated this with the measurements of selected micro-environmental variables. Type I hypolithons were most common and occurred at all altitudes up to 824 m, whilst Type II and Type III hypolithons were less abundant and restricted to lower altitudes on the valley floor (\415 m and \257 m, respectively). Whilst all colonized quartz effectively filtered incident UVB irradiance, transmittance levels for UVA and PAR varied markedly and were significant in determining hypolith type. Notably, the Type I hypolithons occurred under rocks with a significantly lower transmittance of photosynthetically active radiation than Type II and III hypolithons. Altitude and aspect were also significant factors determining hypolith type, and a role for altitude-related abiotic variables in determining the distribution of Type I, II and III hypolithons is proposed.

Characterisation of microbial communities associated with hypolithic environments in Antarctic Dry Valley soils

2008

need for hours of joy, where an impish smile and a quiet "I love you" makes me glow for days. And to Faa'iq and Suhail, who I don't get to see often enough-I'm sure I'll be visiting more often now... And finally, to my parents. Thank you for always encouraging me, for giving me the tools I needed to be the woman I am today. Thank you for your love, openmindedness and constant support of whatever I choose to do, even when you don't agree or understand it. Thank you for the phone calls

Evidence of species recruitment and development of hot desert hypolithic communities

Environmental Microbiology Reports, 2013

Hypoliths, photosynthetic microbial assemblages found underneath translucent rocks, are widely distributed within the western region of the Namib Desert and other similar environments. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to assess the bacterial community structure of hypoliths and surrounding soil (below and adjacent to the hypolithic rock) at a fine scale (10 m radius). Multivariate analysis of T-RFs showed that hypolithic and soil communities were structurally distinct. T-RFLPderived operational taxonomic units were linked to 16S rRNA gene clone libraries. Applying the ecological concept of 'indicator species', six and nine indicator lineages were identified for hypoliths and soil, respectively. Hypolithic communities were dominated by cyanobacteria affiliated to Pleurocapsales, whereas actinobacteria were prevalent in the soil. These results are consistent with the concept of species sorting and suggest that the bottom of the quartz rocks provides conditions suitable for the development of discrete and demonstrably different microbial assemblages. However, we found strong evidence for neutral assembly processes, as almost 90% of the taxa present in the hypoliths were also detected in the soil. These results suggest that hypolithons do not develop independently from microbial communities found in the surrounding soil, but selectively recruit from local populations.

Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica

Systematic and applied microbiology, 2018

Molecular and morphological methods were applied to study cyanobacterial community composition in biological soil crusts (BSCs) from four areas (two nunataks and two ridges) in the Sør Rondane Mountains, Antarctica. The sampling sites serve as control areas for open top chambers (OTCs) that were put in place in 2010 at the time of sample collection and will be compared with BSC samples taken from the OTCs in the future. Cyanobacterial cell biovolume was estimated using epifluorescence microscopy, which revealed the dominance of filamentous cyanobacteria in all studied sites except the Utsteinen ridge, where unicellular cyanobacteria were the most abundant. Cyanobacterial diversity was studied by a combination of molecular fingerprinting methods based on the 16S rRNA gene (denaturing gradient gel electrophoresis (DGGE) and 454 pyrosequencing) using cyanobacteria-specific primers. The number of DGGE sequences obtained per site was variable and, therefore, a high-throughput method was ...

Highly specialized microbial diversity in hyper-arid polar desert

2009

The McMurdo Dry Valleys in Antarctica are a cold hyperarid polar desert that present extreme challenges to life. Here, we report a culture-independent survey of multidomain microbial biodiversity in McKelvey Valley, a pristine example of the coldest desert on Earth. We demonstrate that life has adapted to form highly specialized communities in distinct lithic niches occurring concomitantly within this terrain. Endoliths and chasmoliths in sandstone displayed greatest diversity, whereas soil was relatively depauperate and lacked a significant photoautotrophic component, apart from isolated islands of hypolithic cyanobacterial colonization on quartz rocks in soil contact. Communities supported previously unreported polar bacteria and fungi, but archaea were absent from all niches. Lithic community structure did not vary significantly on a landscape scale and stochastic moisture input due to snowmelt resulted in increases in colonization frequency without significantly affecting diversity. The findings show that biodiversity near the cold-arid limit for life is more complex than previously appreciated, but communities lack variability probably due to the high selective pressures of this extreme environment.

Microbial diversity and gene mining in Antarctic Dry Valley mineral soils

Microbial diversity and gene mining in Antarctic Dry Valley mineral soils JACQUES J SMITH PhD thesis, Department Biotechnology, University of the Western Cape Soil communities are regarded as among the most complex and diverse assemblages of microorganisms with estimated bacterial numbers in the order of 10 9-1 cells.g. Studies on extreme soils however, have reported lower cell densities, supporting the perception that the so-called extreme environments exhibit low species diversity. To assess the extent of microbial diversity within an extreme environment, the mineral soils of the Dry Valleys, Ross Dependency, Eastern Antarctica were investigated using 16S rDNA analysis. Three mineral soils designated MVG, PENP and BIS were analysed, each differing with respect to altitude, protein, lipid, water and DNA content. The midaltitude sample, MVG, yielded the highest levels of DNA and the low altitude BIS soil contained the highest levels of protein, lipid and water. 16S clone libraries were constructed and 60 unique clones were identified and sequenced. BLASTn analysis revealed eight phylogenetic groups with Cyanobacteria, Actinobacteria and Acidobacteria representing the majority. The Cyanobacterial phylotypes were unique to the desiccated high-altitude soils of the PENP sample, suggesting a soil-borne Cyanobacterial population. 21% of the phylotypes identified were assigned as 'uncultured'. DNA isolated from the Antarctic mineral soils was also used to construct a metagenomic clone library consisting of 90700 clones with an average insert size of iii 3.5 kb, representing an estimated 3.4% of the available metagenome. Activity-based screening of the library for genes conferring lipolytic activity yielded no positive clones. It is suggested that the failure to produce positive clones might be a result of insufficient nucleotide coverage of the metagenomic DNA. The metagenomic DNA extracted from the Dry Valley mineral soils was further analyzed using PCR. Two sets of degenerate primers based on conserved regions within lipolytic genes were used to target lipase and esterase genes. One set of primers was selected from a previous study. A second primer set was designed manually from amino acid alignments of true lipase genes from family I, sub-families I-VI. PCR analysis resulted in nine partial gene fragments varying between 240 bp and 300 bp. Bioinformatic analysis revealed that all nine partial gene fragments harboured α/β-hydrolase motifs, putatively identifying two esterases and three lipases from both bacterial and fungal origin. iv DECLARATION I declare that Microbial diversity and gene mining in Antarctic Dry Valley mineral soils is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references.