Visual evoked potentials in cortical auditory and anterior ectosylvian areas of cat (original) (raw)

Abstract

POTENTIALS recorded in cortical primary areas and evoked by stimulation of different sensory afferences have been called "cross-modality non-primary responses" (BUSER and BIGNALL, 1967). They were first described by BREMER (1953) who recorded auditory responses in the visual primary area. Unit recordings in the visual area confirm the presence of neurons activated by auditory stimulation (BENTAL et al., 1968; SPINELLI et al., 1968). Visual evoked potentials have been recorded in the ectosylvian gyrus, which includes auditory areas AI, AI1 and EP, in animals under barbiturate anesthesia (MARSHALL et al., 1943), chloralose anesthesia (BUSER et al., 1959b) and the non-anesthetized animal (BUSER et al., 1959a, b; STERIADE, 1962a, b, 1964). MARSHALL et al, (1943) have called attention to the lack of interaction between auditory and visual evoked potentials of the ectosylvian gyrus suggesting that these responses are not "physiologically real". STERIADE (1964) has presented evidence that these potentials relay in the Iateral geniculate body, and in the pulvinar-later0 posterior nucleus complex. They are modulated by the reticular formation and the primary visual cortex. Nevertheless, there are still doubts concerning the definite cortical origin of photic responses in the ectosylvian gyrus, which could result from activity generated at a more distant source. DESMEDT and MECHELSE (1959) and WOOLSEY et al. (1961) have described auditory and photic evoked potentials in the "insular area". THOMPSON et al. (1963a) also observed responses to the three modafities in the insular area. The more inferior and anterior "orbital region" has been studied by KORN et al. (I 966) and BIGNALL et al. (1966,1967c) and BIGNALL (1967a). They defined it as a polysensory area activated by visual, auditory and somatic stimuli. These studies, however, have not clarified the relationship between polysensory responses, particularly photic potentials and cross-modality visual responses of the auditory area. The present work deals with photic evoked responses in the auditory fields of the ectosylvian gyrus and attempts to determine whether they originate in this cortex or somewhere else. It also describes a small area placed in the rostra1 and ventral end of MI, below and along the ectosylvian sulcus, probably continuous with the insular field previously reported. This is called "anterior ectosylvian association area" (AEA) in this work and is considered a polysensory field with special relevance for visual and auditory integrative processes.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (57)

  1. ADRIAN, E. D. (1941). Afferent discharges to the cerebral cortex from peripheral sense organs. J. Physiol. loo, 159-191.
  2. AMASSIAN, V. E. (1954). Studies on organization of a somesthetic association area including a single unit analysis. J. Neurophysiol. 17, 39-58.
  3. AMASSIAN, V. E., PATTON, H. D., WOODBURY, J. W., TOWE, A. and SC~LAG, J. E. (1955). An interpretation of the surface responses in somatosensory cortex to peripheral and intrarrerd atferent stimulation. Electroencephal. clin. Neurophysiol. 7,48#483.
  4. AMUIASSIAN, V. E. (1961). Microelectrode studies of the cerebral cortex. Znt. Rev. Neurobiol. 3, 67-136. ROBERTO D. GUILOFF, W~.ADIMIRO S. LIFSCHITZ, GUILLERMO 0. ORMET% AND Hvc,o A. AIJKI~X
  5. BENTAL, E. and BIHARI, B. (1963). Evoked activity of single neurons in sensory association cortex of the car. J. Neurophysiol. 26,207-214.
  6. BENTAL, E., DAFNY, N. and FELDMAN, S. (lY68). Auditory and visual stimuli on single cells in the primarb visual cortex of unanesthetized unrestrained cats. Exp. Neural. 20, 341-350.
  7. BERMAN, A. L. (1961a). Ove lap of somatic and auditory cortical response fields in anterior ectosylvian gyrus of cat. J. Neurophysiol. 24, 595-607.
  8. BERMAN, A. L. (1961b). Interaction of cortical responses to somatic and auditory stimuli in anterior ecto- sylvian gyrus of cat. J. Neurophysiol. 24,608-620.
  9. BIGNALL, K. E., IMBERT, M. and BUSER, P. (1966). Optic projections to non visual cortex of the cat. ./. Neurophysiol. 29, 396-409.
  10. BIGNALL, K. E. (1967a). Comparison of optics alferents to primary visual and polysensory areas of the cat neocortex. Exp. Neural. 17, 327-343.
  11. BIGNALL, K. E. (1967b). Effects of subcortical ablations on polysensory cortical responses and interactions in the cat. Exp. Neural. 18, 57-67.
  12. BIGNALL, K. E., SINGER, P. and HERMAN, C. (1967~). Interaction of cortical and peripheral inputs to poly- sensory areas of the cat neocortex. Exp. Neurol. 18, 194-209.
  13. BISHOP, G. H. and CLARE, M. H. (1952). Sites of origin of electric potentials in striate cortex. J. Neurophysiof. 15,201-220.
  14. BREMER, F. (1953). The auditory area of the brain. An oscillographic study of its activity. In Some Problems in Neurophysiology, pp. 46-66. The Athlone Press, University of London.
  15. BROOKS, C. McC. and FUORTES, M. G. (1952). Potential changes in spinal cord following administration of strychnine. J. Neurophysiol. 15, 257-267.
  16. BRUNER, J. (1965). Afferences visuelles non primaires vers le cortex cerebral chez Ie chat. J. Physiol., Paris 57 Suppl. 12, l-120.
  17. BUSER, P. and BORENSTEIN, P. (1959a). Responses somesthesiques, visuelles et auditives recueillies au niveau du cortex "associativ" suprasylvian chez le chat curarid non anesthezie. Electroencephal. din. Neuro- physiol. 11,28_5-304.
  18. _ _ BUSER, P., BORENSTEIN, P., BRUNER, J. (1959b). Etude des systemes "associatifs" visuels et auditifs chez le chat anesthesie au chloralose. Electroencephnl. din. Neurophysiol. 11, 305-324.
  19. BUSER. P. and BIGNALL, K. E. (1967). Non primary sensory projections on the cat neocortex. Znt. Rev. Nehrobiol. 10, 111-165.
  20. DAVSON, H. (1964). A Text-book of General Physiology. Little, Brown and Co., Boston.
  21. DESMEDT. J. E. and MECHELSE. K. (1959). Mise en evidence d'une quatrieme aire de projection acoustique dans l'ecorce cerebrale du chat. 3. Physioi., Paris 51, 44849.
  22. _ DESMEDT, J. E. (1960). In Neural Mechanisms of the Auditory and Vestibular Systems (edited by G. L. RASMUSSEN and W. F. WINDLE), pp. 158-159. Charles C. Thomas, Springfield, Ill.
  23. DUBNER, R. and RUTLEDGE, L. T. (1964). Recording and analysis of converging input upon neurons in cat association cortex. J. Neurophysiol. 27, 620-634.
  24. DUBNER, R. and RUTLEDGE, L. T. (1965). Intracellular recording of the convergence of input upon neurons in cat association cortex. Exp. Neural. 12, 349-369.
  25. DUBNER, R. (1966). Single cell analysis of sensory interaction in anterior lateral and suprasylvian gyrus of the cat cerebral cortex. Exp. Neural. 15255-273.
  26. DUBNER, R. and BROWN, F. J. (1968). Response of cells to restricted visual stimuli in an association area of cat cerebral cortex. Exp. Neurol. 20, 7&86.
  27. DUSSER DE BARENNE, J. F. and MCCULLOCH, W. S. (1938). Functional organization in the sensory cortex of the monkey (Mucaca mulutta). J. Neurophysiol. 1, 69-85.
  28. ECCLES, J. C., FAX-~, P., KOKETXJ, K. (1954). Cholinergic and inhibitory synapses in a pathway from motor- axon collaterals to motoneurons. J. Physiol. 126, 524-562.
  29. GOLDBERG, J. M. and NEFF, W. (1961). Frequency discrimination after bilateral ablation of cortical auditory areas. J. Neuropkysiol. 241, 119-128.
  30. GUILOFF, R. (1970). Estudios sobre aferencias polisensoriales en la corteza ectosilviana y silviana anterior de1 gato. Tesis. Facultad de Medicina, Universidad de Chile.
  31. HIND, J. E. (1953). An electrophysiological determination of tonotopic organization in auditory cortex of cat. J. Neurophysiol. 16, 475-489.
  32. HUBEL, D. H. and WIESEL, T. N. (1965). Receptive fields and functional architecture in two non-striate visual areas (18-19) of the cat. J. Neurophysiol. 28,229-289.
  33. IMBERT, M., BIGNALL, K. E., BUSER, P. (1966). Neocortical interconnections in cat. J. Neurophysiol. 29, 382-395.
  34. &BERT, M. and LANDAU, A. (1967). Analyse unitarie des projections sensorielles au niveau du cortex orbitaire. J. Physiol., Paris 59, 245.
  35. KORN, H., WENDT, R. and ALBB-FESSARD, D. (1966). Somatic projection to the orbital cortex of the cat. Electroencephal. din. Neurophysioi. 21, 209-226.
  36. LI, C. C., CULLEN, C., JASPER, H. (1956). Laminar microelectrode studies of somatosensory cortical poten- tials. J. Neurophysiol. 19, 111-130.
  37. MACLEAN, P. D. and PRIBRAM, K. H. (1953). Neuronographic analysis of medial and basal cerebral cortex- I. Cat. J. Neurophysiol. 16, 312-323.
  38. MARTY, R. O., BENOIT, O., LARGUIER, M. M. (1969). Etude topographique et stratigraphique des proyections du corps genouille lateral sur le cortex cerebral. Arch. Ital. Biol. 107, 723-742
  39. MARSHALL, W. H., TALBOT, S. A. and ADES, H. W. (1943). Cortical response of the anesthetized cat, to grass photic and electrical afferent stimulation. J. Neurophysiol. 6, 1-15.
  40. MEULDERS, M. (1970). Integration centrale des afferences visuelles. J. Physiol., Paris 62, Suppl. 1, 61-109.
  41. MOUNTCASTLE, V. B., DAVIES, P. W., BERMAN, A. L. (1957), Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. J. Neurophysiol. 20, 374-407.
  42. NAKAHAMA, H. (1961). Functional organization of somatic areas of cerebral cortex. ht. Rev. Neurobiol. 3, 187-250.
  43. NIIMI, J. and SPRAGUE, J. M. (1970). Thalamocortical organization of the visual system in the cat. J. camp. Neurol. 138,219-250.
  44. PERL, E. R. and CASBY, J. V. (1954). Localization of cerebral electrical activity: the acoustic cortex of cat. J. Neurophysiol. 17, 429442.
  45. PERL, E. R. and WHITLOCK, D. G. (1955). Potentials evoked in cerebral somatosensory region. J. Neuro- physiol. 18,486-501.
  46. ROSE, J. E. and Woorssu, C. N. (1958). Cortical connections and functional organization of the thalamic auditory system of the cat. In Biological and Biochemical bases of Behavior (edited by H. F. HARLow and C. N. WOOLSEY), pp. 127-150. Wisconsin Press, Madison University.
  47. SPENCER, W. A. and BROOKHART, J. M. (1961). Electrical patterns of augmenting and recruiting waves in depths of sensory motor cortex of cat. J. Neurophysiol. 24, 2649.
  48. SPINELLI, D. N., STARR, A., BARRET, T. W. (1968). Auditory especificity in units recording from cat's cerebral cortex. Exp. Neurol. 22, 75-84.
  49. STERIADE, M. (1962a). Potentiale evocate de stumuli luminosi in cortexul "auditiv" la pisica neanesteziata, St. Cerce. Neural. 7,97.
  50. STERIADE, M. (1962b). Conmutation des responses photiques dam les aires corticales primaires et extra- primaires. St. Cerce. Neurol. 7, 363.
  51. STERIADE, M. (1964). Responses sensorielles non specifiques et associatives. Rev. Roum. Neural. 1, 171-195.
  52. THOMPSON, R. F., JOHNSON, R. H., Hoop=, J. J. (1963a). Organization of auditory, somatic sensory and visual projection to association fields of cerebral cortex in the cat. J. Neurophysiol. 26, 343-364.
  53. THOMPSON, R. F., SMITH, H. E., BLISS, D. (1963b). Auditory, somatic sensory-and visual response inter- actions and interrelations in association and primary cortical fields of the cat. .I. Neurophysiol. 26, 365- 378.
  54. TUNT~RI, A. R. (1950). Physiological determinations of the boundary of the acoustic area in the cerebral cortex of the dog. Am. J. Physiol. 160, 395-401.
  55. VALDBS, F. and ORREGO, F. (1970). Strychnine inhibits the binding of glycine to rat brain cortex membrane. Nature, Land. 226,761-762.
  56. WINKLER, C. and POTTER, A. (1914). An Anatomical Guide to Exuerimental Researchers on the Cat's Bruin. Versluys, Amsterdam.
  57. WOOLSEY, C. N. (1961). Organization of cortical auditory system: A review and a synthesis. In Neural Mechanisms of the Auditory and Vestibular System (edited by G . L. RASMUSSEN and W. F. WINDLE) pp. 165-180. Charles C. Thomas, Springfield, Ill Abstract-Depth recording of photic evoked potentials of auditory and ectosylvian postero- superior cortex of cat do not show reversal of polarity. Strychnine enhances only the auditory potentials. KC1 has a depressor action on auditory responses, but acts slower and irregularly on visual potentials. Visual auditory and somatic responses in AEA (anterior ectosylvian association area) show reversal of polarity. KC1 and strychnine depress and enhance, respectively, all these responses in a similar way. Interaction studies show significant differences between AEA and auditory, posterosuperior ectosylvian and second somatic areas. It is suggested that photic responses of the auditory areas are not generated in this cortex and that AEA is a small polysensory field, probably a medial and caudal expansion of the insulo-orbital field, with special relevance to auditory-visual integrative processes.