Optimization of Subsite Binding to the β5 Subunit of the Human 20S Proteasome Using Vinyl Sulfones and 2-Keto-1,3,4-oxadiazoles: Syntheses and Cellular Properties of Potent, Selective Proteasome Inhibitors (original) (raw)
Journal of Medicinal Chemistry, 2006
Abstract
Beginning with the peptide sequence Cbz-Ile-Glu(OtBu)-Ala-Leu found in PSI (3), a series of vinyl sulfones (VS) were synthesized for evaluation as inhibitors of the chymotrypsin-like activity of the 20S proteasome. Variations at the key P3 position confirmed the importance of a long side chain capped with a hydrophobic group for optimal potency, consistent with a model of binding to the S3 subsite. The tert-butyl glutamic ester initially used at P3 gave plasma unstable, insoluble compounds and was replaced with the better isostere, N-beta-neopentyl asparagine. The inhibitors were shortened by replacing the N-terminal Cbz-isoleucine with a p-tosyl group without loss of potency. Small l-amino acids were used at P2, where d-substitution was not tolerated. The resulting optimized P4-P3-P2 sequence was grafted onto a novel proteasome inhibitor warhead, 2-keto-1,3,4-oxadiazoles (KOD), to produce reversible, subnanomolar proteasome inhibitors that were 1000-fold selective versus cathepsin B (CatB), cathepsin S (CatS), and trypsin-like as well as PGPH-like proteasome activity. A number of compounds in both the VS and the KOD series exhibited growth inhibitory effects against the human prostate cancer cell line PC3 at submicromolar concentrations.
James Janc hasn't uploaded this paper.
Let James know you want this paper to be uploaded.
Ask for this paper to be uploaded.