Radiation-pressure self-cooling of a micromirror in a cryogenic environment (original) (raw)
Abstract
We demonstrate radiation-pressure cavity-cooling of a mechanical mode of a micromirror starting from cryogenic temperatures. To achieve that, a high-finesse Fabry-Pérot cavity (F ≈ 2200) was actively stabilized inside a continuous-flow 4 He cryostat. We observed optical cooling of the fundamental mode of a 50 µm×50 µm×5.4 µm singly-clamped micromirror at ωm = 3.5 MHz from 35 K to approx. 290 mK. This corresponds to a thermal occupation factor of n ≈ 1 × 10 4. The cooling performance is only limited by the mechanical quality and by the optical finesse of the system. Heating effects, e.g. due to absorption of photons in the micromirror, could not be observed. These results represent a next step towards cavity-cooling a mechanical oscillator into its quantum ground state [1].
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- This work was published in Europhys. Lett. 81, 54003 (2008).
- M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science 304, 74 (2004).
- K. C. Schwab and M. L. Roukes, Physics Today (2005).
- V. Braginsky and S. P. Vyatchanin, Phys. Lett. A 293, 228 (2002).
- F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).
- I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).
- C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, arXiv:0705.1728 (2007).
- S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Nature 444, 67 (2006).
- O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Nature 444, 71 (2006).
- A. Schliesser, P. Del'Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, Phys. Rev. Lett. 97, 243905 (2006).
- T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, , et al., Phys. Rev. Lett. 98, 150802 (2007).
- S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 80, 688 (1998).
- P. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett. 83, 3174 (1999).
- D. Kleckner and D. Bouwmeester, Nature 444, 75 (2006).
- O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, Phys. Rev. Lett. 97, 133601 (2006).
- M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Phys. Rev. Lett. 99, 017201 (2007).
- J.-M. Courty, A. Heidmann, and M. Pinard, Eur. Phys. J. D 17, 399 (2001).
- D. Vitali, S. Mancini, L. Ribichini, and P. Tombesi, Phys. Rev. A 65, 063803 (2002).
- I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Müller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, and N. F. de Rooij, Phys. Rev. A 59, 1038 (1999).
- C. H. Metzger and K. Karrai, Nature 432, 1002 (2004).
- O. Arcizet, T. Briant, A. Heidmann, and M. Pinard, Phys. Rev. A 73, 033819 (2006).
- M. Paternostro, S. Gigan, M. S. Kim, F. Blaser, H. R. Böhm, and M. Aspelmeyer, New J. Phys. 8, 107 (2006).
- D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).
- J. Zhang, K. Peng, and S. L. Braunstein, Phys. Rev. A 68, 013808 (2003).
- H. R. Böhm, S. Gigan, F. Blaser, A. Zeilinger, M. Aspelmeyer, G. Langer, D. Bäuerle, J. B. Hertzberg, and K. C. Schwab, Appl. Phys. Lett. 89, 223101 (2006).
- S. Bose, K. Jacobs, and P. L. Knight, Phys. Rev. A 56, 4175 (1997).
- M. Pinard, A. Dantan, D. Vitali, O. Arcizet, T. Briant, and A. Heidmann, Europhys. Lett. 72, 747 (2005).
- S. Pirandola, D. Vitali, P. Tombesi, and S. Lloyd, Phys. Rev. Lett. 97, 150403 (2006).
- A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Nature 443, 193 (2006).
- J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, arXiv:0707.1724 (2007).
- Note that in our case radiation pressure originates from the reflection of photons off the mirror surface and not from absorption and re-emission as is the case in conventional laser cooling. Still, the cooling mechanism of both schemes is completely analogous.
- The ratio between PDH power spectrum and displacement power spectrum Sx depends on the cavity detuning ∆. We can eliminate the unwanted detuning dependence by normalizing Sx via a reference signal of a known constant displacement power spectrum S ref that is generated by frequency modulation of the pump laser. In addition, S ref is an absolute calibration of the effective mass of the mechanical oscillator, as is outlined in detail e.g. in [8].
- The reduction in finesse compared to the value of 8000 is due to our choice of the optimal working point on the cantilever close to the tip of the micromirror, where edge diffraction increased the losses in the cavity.